
1

Reuse Contracts as a basis for Reuse Contracts as a basis for
investigating reusability of investigating reusability of

Smalltalk codeSmalltalk code
Koen De Hondt

Programming Technology Lab
Computer Science Department

Vrije Universiteit Brussel

kdehondt@vub.ac.be http:/progwww.vub.ac.be/

2

OverviewOverview

l Problems with reuse
l Problems with evolution
l What are reuse contracts?
l Reuse contracts at work
l Examining class hierarchies based on

reuse contracts
l Reuse contract research
l Exercises: introduction to the browser

3

How do You Reuse a Class?How do You Reuse a Class?

l Cloning (copy and paste)
l Inheritance / method overriding
l Composition / delegation

4

Reuse by CloningReuse by Cloning

l Reused ÒcomponentsÓ are not easily
adaptable
— no support is provided for adaptation/reuse

l No relation between original and result
— difficult to maintain since bug fixes and

upgrades are not propagated to the derived
application (proliferation of versions)

This kind of reuse should be avoided!

5

Reuse by InheritanceReuse by Inheritance

How do you determine
— what to reuse (inherit)?
— what to adapt (override)?
— what to write from scratch?

?

Class A

Subclass B

Subclass C

Subclass D

6

Example: Make a Subclass of Example: Make a Subclass of
SetSet
Framework

Application

Set

CountingSet

#add:
#addAll:

A CountingSet is a Set that
counts all added elements

What to override?
— #add: if #addAll: uses #add:
— #add & addAll: if #addAll:

does not use #add:

7

Reuse by CompositionReuse by Composition

How do you determine
— what to reuse (what to compose, what to

delegate)?
— what to adapt (how to compose)?
— what to write from scratch?

Class B

Class A
Class C

?

8

Reusing a Class is HardReusing a Class is Hard

l Current OOA/OOD notations do not provide
enough information to reuse a class

l Usually, developers do not document how a class
can be reused, they only document what each
method does

l If a class comment contains reuse information, it
usually has the form of a cookbook

Reusers are compelled to
inspect the source code

9

Inspecting the Source CodeInspecting the Source Code

l To reuse a class:
— inspect the class
— inspect all its superclasses
— inspect all the classes it co-operates with

l Source code inspection is error-prone
l If source code inspection doesnÕt work:

talk to the developer (i.e. the expert)!

10

l Self sends
l Super sends
l Abstract methods
l Template methods
l Default methods
l Methods that are overridden frequently
l Methods that are part of a design pattern
l Co-operation with other objects/classes
l ...

What are You Looking for?What are You Looking for?

Reusers need the
specialisation interface

11

Self Sends are ImportantSelf Sends are Important

l Self sends & template methods & abstract
methods reify the design of a class

l Method decomposition
— distinguish ÒcoreÓ methods from ÒperipheralÓ

methods

l Using self sends = planning for reuse
— fine-grained overriding of methods

12

Self Sends: Planning for ReuseSelf Sends: Planning for Reuse

same external interface
(#builderClass is private)

can be reused with other builders

cannot be reused with other builders
without overriding all methods that
refer to UIBuilder

ApplicationModel in VisualWorks 2.5

openInterface: aSymbol
builder := self builderClass new.
...
“a lot of expressions here”
...

ApplicationModel in VisualWorks 2.0

openInterface: aSymbol
builder := UIBuilder new.
...
“a lot of expressions here”
...

13

Co-operation with Other Co-operation with Other
Objects/Classes is ImportantObjects/Classes is Important

l Delegation of responsibilities principle
l Using delegation= planning for reuse

— a system can easily be extended by adding
new classes

— objects with Òthe same interfaceÓ can be
substituted for each other

14

Delegation: Planning for ReuseDelegation: Planning for Reuse

can be reused for
different menu items

cannot be reused for
different menu items

Menu in VisualWorks 2.0

PopUpMenu in VisualWorks 1.0

same external behaviour
same interface

for instance creation

PopUpMenu

labels

Menu MenuItem

Strings !

items

15

OverviewOverview

l Problems with reuse
l Problems with evolution
l What are reuse contracts?
l Reuse contracts at work
l Examining class hierarchies based on

reuse contracts
l Reuse contract research
l Exercises: introduction to the browser

16

Evolution is ImportantEvolution is Important

l Iterative development
— a framework is never finished

l Changing requirements
— functional: user requirements
— non-functional: maintainability,

adaptibility, reusability, customisability, ...

17

What to do When the What to do When the
Framework Changes?Framework Changes?

Framework 1.0

Application

X

Y

Framework 2.0

Application

X

Y

Evolution

?

18

Example Evolution Conflict (1)Example Evolution Conflict (1)

Framework 1.0

Application

X

Y

Framework 2.0

Application

X

Y

Evolution

instance of
subclass of

i

#m
#p

se
lf

se
nd

(n
ot d

ocu
m

en
te

d)

#p #p

i
Method capture

#m

19

Example Evolution Conflict (2)Example Evolution Conflict (2)

Framework 1.0

Application

X

Y

Framework 2.0

Application

X

Y

Evolution

instance of
subclass of

i

#m
#p

#p
#q

i

#m
#p 8

Inconsistent methods

#p
#q

self send

20

More Evolution ConflictsMore Evolution Conflicts

l Interface conflicts
— the name of a reused method/class has been

changed
— a method that was added by a reuser has been

introduced by the new version of the framework

l Unanticipated recursion
— a method invokes another one in the application

while the new version of the framework introduces
an invocation of the first by the latter

21

Spotting Evolution ProblemsSpotting Evolution Problems

l Unless the changes to the framework
are well-documented (informally), the
application developer is condemned to
perform code inspection to determine
what has changed

l Often evolution conflicts are not spotted
until the application is running based on
the new version of the framework

22

What are the Challenges?What are the Challenges?

l Supporting reuse
— what can be reused, what must be adapted, and what

must be built from scratch ?
— formal documentation on how classes are reused

l Supporting evolution
— change propagation

l Support for estimates/testing/metrics
— feasibility of reusing a class
— the cost of ÒupgradingÓ the class repository

23

OverviewOverview

l Problems with reuse
l Problems with evolution
l What are reuse contracts?
l Reuse contracts at work
l Examining class hierarchies based on

reuse contracts
l Reuse contract research
l Exercises: introduction to the browser

24

Reuse ContractsReuse Contracts

l Are contracts between the framework
developer and the application
developer

l State what assumptions can be made
about reusable components

l State how components are actually
reused

25

Reuse Contract NotationReuse Contract Notation

lNotation based on OMT (UML)
lMethods are annotated with

specialisation clauses to make the
specialisation interface explicit

l ÒReuse operatorsÓ, or ÒmodifiersÓ, lay
down how reuse is achieved

26

Reuse Contracts for InheritanceReuse Contracts for Inheritance

l Enhance the interface of a class
with specialisation clauses

l Identify what changes are made
when a class is subclassed:
— concretisation/abstraction
— extension/cancellation
— refinement/coarsening

l Specialisation clauses may contain
names of methods invoked
through self sends, and ÒsuperÓ

#collect: [#do:]
#do:
#select: [#do:]

concretisation
#do:

reuse operator

abstract method

specialisation clause

Collection

#collect: [#do:]
#do:
#select: [#do:]

Set

27

Reuse Operator: ConcretisationReuse Operator: Concretisation

l Makes abstract methods
concrete

l Does not change the
specialisation clause of
the concretised methods

l Design preserving
l Inverse = abstraction

#collect: [#do:]
#do:
#select: [#do:]

#collect: [#do:]
#do:
#select: [#do:]

concretisation
#do:

Collection

Set

28

Reuse Operator: AbstractionReuse Operator: Abstraction

l Makes a concrete method
abstract

l Design breaching
l Inverse = concretisation

abstraction
#preferredBounds

#preferredBounds []

View

#preferredBounds []

LabeledButtonView

#preferredBounds []

SimpleView

#preferredBounds []

BasicButtonView

29

Reuse Operator: ExtensionReuse Operator: Extension

l Typically performed by an
application developer to add
application specific behaviour

l Adds new methods to the
interface of a class

l Design preserving
l Inverse = cancellation

...

...
#- []
#grow []

extension
#-
#grow

Collection

Set

30

Reuse Operator: CancellationReuse Operator: Cancellation

l Typically performed by an
application developer to
remove behaviour

l Removes methods from
the interface of a class

l Design breaching
l Inverse = extension

...
#add: []
#remove:ifAbsent: []

...
#add: []

cancellation
#remove:ifAbsent:

Collection

SequenceableCollection

...

ArrayedCollection

cancellation
#add:

31

Reuse Operator: RefinementReuse Operator: Refinement

l Adds elements to the
specialisation clause of a
method

l Used to e.g. :
— reduce redundancy
— specialise the behaviour of

an existing method with an
existing behaviour

l Design preserving
l Inverse = coarsening

#postCopy []

#postCopy
[super, #breakDependents]

Object

Model

refinement
#postCopy [super,

+ #breakDependents]

32

Reuse Operator: CoarseningReuse Operator: Coarsening

l Removes elements from
the specialisation clause of
a method

l Used to e.g.:
— optimize performance

l Design breaching
l Inverse = refinement

#size [#do:]

#size []

coarsening
#size [- #do:]

Collection

Set

33

Reuse OperatorsReuse Operators

lMake a distinction between different
kinds of inheritance

l State how a class is derived from its
superclass

lAre orthogonal basic operators
lUsually, one subclassing step is a

combination of several reuse operators

34

Frequently Used Combinations Frequently Used Combinations
of Reuse Operatorsof Reuse Operators

l Extension & refinement
l Coarsening & cancellation
l Concretisation & refinement
l Concretisation & extension & refinement
l Coarsening & refinement = redefinition
l Coarsening & extension & refinement

= factorization

35

Multi-Class Reuse Contracts Multi-Class Reuse Contracts
(in short)(in short)

l Co-operating classes are put in one reuse
contract; these classes are called ÒparticipantsÓ

l Interfaces of classes as in reuse contracts for
inheritance

l Specialisation clauses are extended with names
of methods invoked on other classes

l Reuse operators identify what changes are
made to a whole contract

36

Interface opening

Reuse Contract NotationReuse Contract Notation
participantsspecialisation clauses

#openInterface:

ApplicationModel #source:
#add:
#openWithExtent:

UIBuilder

#model:
#displayPendingInvalidation

ApplicationWindow

#openInterface:
[#model:, #displayPendingInvalidation]

#openInterface:
[#source:, #add:,
 #openWithExtent:]

#openInterface:
[#preBuildWith:,
 #hookupWindow:spec:builder:,
 #postBuildWith:,
 #postOpenWith:]

self
builder

37

OverviewOverview

l Problems with reuse
l Problems with evolution
l What are reuse contracts?
l Reuse contracts at work
l Examining class hierarchies based on

reuse contracts
l Reuse contract research
l Exercises: introduction to the browser

38

Reuse Contracts at WorkReuse Contracts at Work

The formal nature of reuse contracts
enables their use in a development
environment

— code generation from reuse contracts
— impact analysis when a framework

changes (assessing evolution conflicts)
— effort estimation for framework

customisation
— extraction from source code

39

Estimating ReuseEstimating Reuse

Framework

Application

Set

CountingSet

#add:
#addAll:

?

Framework

Application

Set

CountingSet

#add: []
#addAll: [#add:]

#add: [super, #incCount]
#incCount []

What to override?

40

EvolutionEvolution

Framework

Application

Set

CountingSet

#add: []
#addAll: [#add:]

#add: [super, #incCount]
#incCount []

Evolution

Framework

Application

Set

CountingSet

#add: []
#addAll: [#add:]

#add: [super, #incCount]
#incCount []

8

Not all additions
are counted anymore

41

Documenting ReuseDocumenting Reuse
Framework

Application

Set

CountingSet

#add: []
#addAll: [#add:]

#add: [super, #incCount]
#incCount []

extension
#incCount

refinement
#add: [super,+#incCount]

Framework

Application

Set

CountingSet

#add: []
#addAll: [#add:]

#add: [super, #incCount]
#incCount []

42

Documenting EvolutionDocumenting Evolution

Framework

Set #add: []
#addAll: [#add:] Evolution

Framework

Set #add: []
#addAll: [#add:]8

Framework

Set #add: []
#addAll: [#add:]

Framework

Set #add: []
#addAll: []coarsening

#addAll: [-#add:]

43

Estimating Impact of ChangesEstimating Impact of Changes
Framework

Application

Set

CountingSet

#add: []
#addAll: [#add:]

#add: [super, #incCount]
#incCount []

extension
#incCount

refinement
#add: [super,+#incCount]

coarsening
#addAll: [-#add:]

Framework

Application

Set

CountingSet

#add: []
#addAll: []

#add: [super, #incCount]
#incCount []

extension
#incCount

refinement
#add: [super,+#incCount]

#addAll: needs to be
overridden too

44

OverviewOverview

l Problems with reuse
l Problems with evolution
l What are reuse contracts?
l Reuse contracts at work
l Examining class hierarchies based on

reuse contracts
l Reuse contract research
l Exercises: introduction to the browser

45

Extraction of Reuse ContractsExtraction of Reuse Contracts

l Reuse contracts for
inheritance can be
extracted from
Smalltalk code

l Each subclassing step
is decomposed in a
combination of
maximum 6 different
reuse operators

class

reuse
operators

46

Too Much Extracted Too Much Extracted
InformationInformation

l The extractor does not know which
methods are important

l Interaction with a developer is required
to strip implementation details

47

Inspecting Extracted Inspecting Extracted
ExtensionsExtensions

48

Inspecting Extracted Inspecting Extracted
ConcretisationsConcretisations

49

Inspecting Extracted Inspecting Extracted
RefinementsRefinements

50

Inspecting Extracted Inspecting Extracted
CoarseningsCoarsenings

51

Inspecting Extracted Inspecting Extracted
CancellationsCancellations

52

Spotting Bad Designs in a Spotting Bad Designs in a
Class HierarchyClass Hierarchy

l Look for design breaching reuse
operators
— they indicate methods that do not respect

the design as laid down by a superclass

l Examine what happens with the
affected methods in reuse operators that
are applied later on

53

Spotting Bad Designs: ExampleSpotting Bad Designs: Example
The Stream hierarchy is awkward
wrt. the #next method.

1

2

3

54

Impact of Bad Coding StyleImpact of Bad Coding Style

l Bad coding style is troublesome for the
extractor
— e.g. only super send, bad super send, ...

l This has driven us to make qualitative
assessment of source code possible

l An analysis tool is integrated in our
browser

55

OverviewOverview

l Problems with reuse
l Problems with evolution
l What are reuse contracts?
l Reuse contracts at work
l Examining class hierarchies based on

reuse contracts
l Reuse contract research
l Exercises: introduction to the browser

56

Reuse Contract ResearchReuse Contract Research
l Reuse contracts have been applied to

— classes (inheritance)
— sets of interacting classes/components
— state diagrams

l Under investigation:
— can reuse contracts describe design patterns?
— generic reuse contracts
— extraction of multi-class reuse contracts
— software architectures and componentware
— reuse contracts in a development environment
— more documentation than interfaces and invocations

57

Design Pattern ExampleDesign Pattern Example
graphics

operation [operation]refinement
extension

concretisation

concretisation

Component

#operation

Client

Leaf

#operation

Composite

#operation
#add:
#remove:
#getChild: CompositeA

#operation
#add:
#remove:
#getChild:

58

Summary: TheorySummary: Theory

l Reuse contracts formally document what
a reuser can assume about a Òreusable
componentÓ

l Reuse operators formally document how
a reusable component is actually reused

l Formal rules for change propagation
enable automatic detection of evolution
conflicts

59

Summary: PracticeSummary: Practice

l Reuse contracts for inheritance can be
extracted
— examination of existing source code
— understanding the design
— human input is needed to filter out

implementation details
— bad coding style may give rise to extraction

problems

60

OverviewOverview

l Problems with reuse
l Problems with evolution
l What are reuse contracts?
l Reuse contracts at work
l Examining class hierarchies based on

reuse contracts
l Reuse contract research
l Exercises: introduction to the browser

61

The Browser for the ExercisesThe Browser for the Exercises

l Home-made fully-functional browser
l Composed of reusable Òbrowser part

componentsÓ built with ApplFLab
l Can easily be

extended with other
Òclass view/editor
componentsÓ

See ESUGÕ96 Summer School
ÒApplFLab: Custom-made user
interface components in VisualWorksÓ

62

Enhanced Browser Ñ GeneralEnhanced Browser Ñ General

Class selector

Method selector

Method editor

Different views Different views/tools

Different method editors

Different views

63

Browser Ñ˚Reuse ContractsBrowser Ñ˚Reuse Contracts

64

Browser Ñ Code AnalysisBrowser Ñ Code Analysis

65

Browser Ñ ClustersBrowser Ñ Clusters

66

Browser Ñ MetricsBrowser Ñ Metrics

67

ExercisesExercises

l Use the enhanced browser to
investigate Smalltalk code
— Examine class hierarchies based on

extracted reuse contracts
— Analyse the code to find methods that

hinder reuse
— Explore the different tools

l File in your own Smalltalk classes/
frameworks

68

Up-to-date InformationUp-to-date Information

http://progwww.vub.ac.be/prog/pools/rcs/

