Reuse Contracts as a basis for
investigating reusability of
Smalltalk code

Koen De Hondt
Programming Technology Lab
Computer Science Department

Vrije Universiteit Brussel

kdehondt@vub.ac.be http: / progwww.vub.ac.be/

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

How do You Reuse a Class?

Cloning (copy and paste)
Inheritance / method overriding
Composition / delegation

Reuse by Cloning

Reused [components[Jare not easily
adaptable

no support is provided for adaptation/reuse
No relation between original and result

difficult to maintain since bug fixes and
upgrades are not propagated to the derived
application (proliferation of versions)

A This kind of reuse should be avoided

Reuse by Inheritance
Class A

How do you determine
what to reuse (inherit)?

what to adapt (override)?

Subclass B

what to write from scratch?

Subclass C

A

Subclass D

Example: Make a Subclass of
Set

Framework What to override?
Set iZﬂS:A..: #add: if #addAll: uses #add:

#add & addAll: if #addAll:
does not use #add:

CountingSet
A CountingSet is a Set that
Application counts all added elements

Reuse by Composition

How do you determine

what to reuse (what to compose, what to
delegate)?

what to adapt (how to compose)?

what to write from scratch?

Reusing a Class is Hard

Current OOA /OOD notations do not provide
enough information to reuse a class

Usually, developers do not document how a class
can be reused, they only document what each
method does

If a class comment contains reuse information, it
usually has the form of a cookbook

Reusers are compelled to
inspect the source code

Inspecting the Source Code

To reuse a class:

inspect the class

inspect all its superclasses

inspect all the classes it co-operates with
Source code inspection is error-prone

If source code inspection doesn/t work:
talk to the developer (i.e. the expert)!

What are You Looking for?

Self sends

Super sends

Abstract methods
Template methods

Default methods

Methods that are overridden frequently

Methods that are part of a design pattern
Co-operation with other objects/classes

Self Sends are Important

Self sends & template methods & abstract
methods reify the design of a class

Method decomposition

distinguish [core['methods from [peripherall’
methods

Using self sends = planning for reuse
fine-grained overriding of methods

Self Sends: Planning for Reuse

ApplicationModel in VisualWorks 2.5
ppricationfodelin VISUaVorks can be reused with other builders
openlinterface: aSymbol

builder := self builderClass new.

“a lot of expressions here”

same external interface

(#builderClass is private)
ApplicationModel in VisualWorks 2.0

openinterface: aSymbol

builder := UlBuilder new.
cannot be reused with other builders

without overriding all methods that

“a lot of expressions here”
P refer to UIBuilder

Co-operation with Other
Objects/Classes is Important

Delegation of responsibilities principle
Using delegation= planning for reuse

a system can easily be extended by adding
new classes

objects with [the same interfacelcan be
substituted for each other

Delegation: Planning for Reuse

Menu in VisualWorks 2.0
can be reused for

different menu items

-’
same external behaviour

PopUpMenu in VisualWorks 1.0 same mterface .
for instance creation

PopUpMenu Strings !

cannot be reused for

different menu items

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

Evolution is Important

Iterative development
a framework is never finished
Changing requirements
functional: user requirements

non-functional: maintainability,
adaptibility, reusability, customisability, ...

What to do When the
Framework Changes?

Framework 1.0 i) Framework 2.0
\{ \{ 2
[b

Evolution

Application Application

y P LE 0 0 0
Framework 1.0 Framework 2.0
X | #m X Zm
D 0 P
#| Y #p| Y Q
. o
.| Method capture
@ Application @ Application

Example Evolution Conflict (2)

Framework 1.0 Framework 2.0

Evolution

C I self send

----® instance of

- subclass of

More Evolution Conflicts

Interface conflicts

the name of a reused method/ class has been
changed

a method that was added by a reuser has been
introduced by the new version of the framework

Unanticipated recursion

a method invokes another one in the application
while the new version of the framework introduces
an invocation of the first by the latter

Spotting Evolution Problems

Unless the changes to the framework
are well-documented (informally), the
application developer is condemned to
perform code inspection to determine
what has changed

Often evolution conflicts are not spotted
until the application is running based on
the new version of the framework

What are the Challenges?

Supporting reuse

what can be reused, what must be adapted, and what
must be built from scratch ?

formal documentation on how classes are reused
Supporting evolution

change propagation
Support for estimates/ testing / metrics

teasibility of reusing a class
the cost of :upgradinthhe class repository

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

Reuse Contracts

Are contracts between the framework
developer and the application
developer

State what assumptions can be made
about reusable components

State how components are actually
reused

Reuse Contract Notation

Notation based on OMT (UML)

Methods are annotated with
specialisation clauses to make the
specialisation interface explicit

[Reuse operators() or [modifiers[) lay
down how reuse is achieved

Reuse Contracts for Inheritance

. specialisation clause
Enhance the interface of a class

with specialisation clauses

Identify what changes are made

#collect: [#do;
#do:
concretisation/ abstraction #select: [#do:]

abstract method

when a class is subclassed:

extension/cancellation o
concretisation

refinement/ coarsening #do:
Specialisation clauses may contain
names of methods invoked

through self sends, and [super[’ eeollecl=do]

#do:
reuse operator | #select: [#do]

Reuse Operator: Concretisation

Collection
Makes abstract methods Hoollect. [#do]

concrete #do:
#select: [#do:]
Does not change the

specialisation clause of concretisation
o #do:

the concretised methods

Design preserving

. #collect: [#do:
Inverse = abstraction #do: e

#select: [#do:]

Reuse Operator: Abstraction

#preferredBounds []
Makes a concrete method

abstract

#preferredBounds []

Design breaching
Inverse = concretisation

A\
BasicButtonView
#preferredBounds []

abstraction
#preferredBounds

LabeledButtonView
#preferredBounds []

Reuse Operator: Extension

Typically performed by an
application developer to add

application specific behaviour

Adds new methods to the oxtension
interface of a class /\ #

Design preserving
Inverse = cancellation

Reuse Operator: Cancellation

Collection

Typically performed by an (]
o 2 #add:
application developer to sremove:itAbsent: []

remove behaviour R

Removes methods from #remove:ifAbsent:

the interface of a class SequenceableCollection

| SequenceableCollection |
Design breaching

Inverse = extension canc(je(;Iation
#add:

ArrayedCollection

Reuse Operator: Refinement

Adds elements to the

specialisation clause of a

method #postCopy []

Used toe.g. : refinement

#postCopy [super,
+ #breakDependents]

specialise the behaviour of

an existing method with an
o . #postCopy
existing behaviour [super, #breakDependents]

reduce redundancy

Design preserving

Inverse = coarsening

Reuse Operator: Coarsening

Removes elements from

the specialisation clause of Collection

Used to e.g.: coarsening
optimize performance Feize |- #do)

Design breaching

Inverse = refinement

Reuse Operators

Make a distinction between different
kinds of inheritance

State how a class is derived from its
superclass

Are orthogonal basic operators

Usually, one subclassing step is a
combination of several reuse operators

Frequently Used Combinations
of Reuse Operators

Extension & refinement

Coarsening & cancellation
Concretisation & refinement
Concretisation & extension & refinement
Coarsening & refinement = redefinition

Coarsening & extension & refinement
= factorization

Multi-Class Reuse Contracts
(in short)

Co-operating classes are put in one reuse
contract; these classes are called [participants(]

Interfaces of classes as in reuse contracts for
inheritance

Specialisation clauses are extended with names
of methods invoked on other classes

Reuse operators identify what changes are
made to a whole contract

Reuse Contract Notation

specialisation clauses participants

[
#openlnterface: UlIBuild =
ApplicationModel [#source:, #add:, #source:

#openWithExtent:] #add:
—> .

#openinterface: #openWithExtent:

#openlnterface:
#model:, #displayPendinglpvalidation]

—>
#openlinterface:

[#preBuildWith:, ApplicationWindow

#hookupWindow:spec:builder:, #model-
zgg::g;'g\c/\/'rh] #displayPendinglnvalidation

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

Reuse Contracts at Work

The formal nature of reuse contracts
enables their use in a development
environment

code generation from reuse contracts

impact analysis when a framework
changes (assessing evolution conflicts)

effort estimation for framework
customisation

extraction from source code

Estimating Reuse

Framework Framework

#add: Set |#add: []
#addAll: #addAll: [#add:]

Set

CountingSet

#add: [super, #incCount]
#incCount []

Application

Evolution

Framework Framework

\ - SN
ot | #add: [] { \[o |#add: []
NNNAS M ©olution #addAll: [0]

CountingSet CountingSet

#add: [super, #incCount] #add: [super, #incCount]
#incCount [] #incCount ['1

Not all additions
are counted anymore

Application

Documenting Reuse

Framework

Framework

#add:]
#addAll: [#add:]

Set

CountingSet

#add: [super, #incCount]
#incCount []

Application

#add: []

Sel | addAll: [#add]

extension
#incCount
refinement
#add: [super,+#incCount]

CountingSet

#add: [super, #incCount]
#incCount []

Application

Documenting Evolution

Framework

#add: []
#addAll: [#add:]

Set

Framework

#add: []
#addAll: [#add:]

Set

Y ¥

Evolution

: M Framework
X ¥

coarsening

Framework

#add: []
#addAll: [#aRd:]

Set

#add: []

Set | addali: []

#addAll: [-#add:]

Estimating Impact of Changes

Framework Framework

~/ R
Set |#2dd: [] (\[Set |#add: []

#addAll: [#add:] coarsening #addAll: []
#addAl(: [-#add:]

extension extension
#incCount #incCount
refinement A refinement
#add: [super,+#incCount] #add: [swger,+#incCount]

P\ [coimngser]

#add: [super, #incCount] #add: [super, #incCount]
#incCount [] #addAll: needs to be
Application overridden too :ation

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

Extraction of Reuse Contracts

Reuse contracts for

axlension

inheritance can be

extracted from
Smalltalk code

Each subclassing step ©OPerators
is decomposed in a
combination of
maximum 6 different
extansion
reuse operators eI

Too Much Extracted
Information

The extractor does not know which
methods are important

Interaction with a developer is required
to strip implementation details

P e O acteda
O

’,
aterGion 4 ADSIract
Object skip-
axtersion Concrete
Stream maln (choss nextChunk stipSeparatorns peskFor 31Er

| NeaCrunk (Cass SEipSeparatons peskFor nex)

sekableSiream
corerefisation
refinemant
axersGn
Posttionable Stream
Coarsening
axeraGin
InternalStream
arcekatien
oo retisanon
axerGion
WriteStream
axerGin

ReadwriteStream

pe

sipdoTo

pask (nex

SKISHPAMANONs (1SS Skip nest)

). AlENg)
shp A1ENg)

.
ez

{next sk 31ENG)

Inspecting Extracted
Concretisations

PosdtionableSiream
Coarsening

Abstract

Concrete
atEnd ()
COrReris
aip

Inspecting Extracted
Refinements

sisnsion
Read'wyite Sweam

MalinkotingAl [meel EnY
-_1‘-- |;.'Ajrn:

Inspecting Extracted
Coarsenings

coreretisation
refinemeant
axerGin

Posdionable Siream

arcakatioen
OO refisanon
A1erGn
WriteStream
axeraGin

ReadwriteStream

= Abstract
Concrete
gplaySning {pnsty

aterGion = AbStract
OD’CC' naxe |
axteraion Concrete
Stream

axeraGion
Paekable Stiream
Coreretisanon
refinemant
axersGn
Posttionable Stream
COQrsering
axersGn
InternalStream

] |
Corereisanon
axerGion
WriteStream
axerGin

ReadwriteStream

Spotting Bad Designs in a
Class Hierarchy

Look for design breaching reuse
operators
they indicate methods that do not respect
the design as laid down by a superclass
Examine what happens with the
affected methods in reuse operators that
are applied later on

Spotting Bad Designs: Example

The Stream hierarchy is awkward
wrt. the #next method.

Absiract
alErd ()
cordects ()
nssh)
sReadabis()
IWrrakie ||

do=a]
cortertsSpecies)

i.::f"ng:;;;“m nexd (pasiEndg)
WriteStream rsadPostion (posiion)
extansion
HeaowmeStream

Impact of Bad Coding Style

Bad coding style is troublesome for the
extractor

e.g. only super send, bad super send, ...

This has driven us to make qualitative
assessment of source code possible

An analysis tool is integrated in our
browser

Overview

Problems with reuse

Problems with evolution

What are reuse contracts?

Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research

Exercises: introduction to the browser

Reuse Contract Research

Reuse contracts have been applied to

classes (inheritance)
sets of interacting classes/components
state diagrams

Under investigation:
can reuse contracts describe design patterns?
generic reuse contracts
extraction of multi-class reuse contracts
software architectures and componentware
reuse contracts in a development environment

more documentation than interfaces and invocations

Design Pattern Example

Component

#operation

Concretisation refinement | | operation [operation]
extension

Composite o
concretlsatlon

Leaf #operation
#add:

#remove: -
#getChild: CompositeA

#operation
#add:

#remove:
#getChild:

#operation

Summary: Theory

Reuse contracts formally document what
a reuser can assume about a [reusable
component!]

Reuse operators formally document how
a reusable component is actually reused

Formal rules for change propagation
enable automatic detection of evolution
conflicts

Summary: Practice

Reuse contracts for inheritance can be
extracted

examination of existing source code
understanding the design

human input is needed to filter out
implementation details

bad coding style may give rise to extraction
problems

Overview

Problems with reuse

Problems with evolution

What are reuse contracts?

Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research

Exercises: introduction to the browser

The Browser for the Exercises

Home-made fully-functional browser

Composed of reusable [browser part
components[built with ApplFLab

Can easily be See ESUG96 Summer School

o DApplFLab: Custom-made user
(S Xtended Wlth Other interface components in VisualWorks[]
class view / editor

components| |

Enhanced Browser [1 General

@] T Browser L]
SIETENENE { § Duftintion | 2y Methods | & Herasciy | B Comanont] 4 RC »1

2 = . . 1 '
ﬂ: ::.,,,.i Different views |— Different views/tools | 12 contenss < [
AT-Teok : —
Cobectiore-Abstract e b n
C0 Bt G- AfTirped
Cobectiore-Sequanceabls Method selector
CORCONG-Searne :
Colectiore-Sinng Support - - -
Cobctione-S ppart A Tast Camens | B Men ™ Different views
Cobectiore-Taat i | & Camens| [Merw | 22 wrage —I

i
“..
.

] | et
| Class selector ;

il .,~| Different method editors |,,‘ Al T
Etbr——rrr—— the coliection of the siream = nob an Ay of & Siring. Fal Fihe
Inherra Encoded Sheam Coretrucior ROan & POGRONSS At 15 and, of Fihe poalion & o of Dounds inths
e tSreanm
Pestaab s Sream
Peciiomb b Steam

ReadSiraam emiive: 63 Method editor
e BeSIroanm poalica >= RadLimk

Stheam Trus: [l pastEnd]
SreamEncode fFA56 | Colection at (poalion = posiion + 1))

@ e O chss

Browser [| [Reuse Contracts

u]

Browser

HiElRlal=]

A TSy na hes
AT-Took

CO RCtio G- ALyt
Cobectiore-Armaped
CoRctio ne-S4qua nisab b

Cobectiore-Sreame:

CO RO NG-Sng Suppdrt
Cobectiore-Suppont
Cobectione-Test
Cobectiore-Unorcdered

EncodadSiream
EncosedSireanConinactor

interra Encoded Siream Coredructar
e Sream

Peeicab e 5ream

Pesiicnab kb Stwam

ReadSiream

Shream
SteamEncode

@ e O chss

1 Q) Commecet| &= RC

Reuse Contracts

[pmms | & Chusties | wwirics

Spectalisation Intertace

G NG =l Abdtract
Object Concrote
G (e

Stream

G (e

Peectable Siream
Conresation
aRermon

ol it
Postiomable Siream
couening
aRe o
InternalStream
cancelabion
COnreEsation

@ rmon
WriteStream

@ rmon

Readwrie Stream

u]

B sy B8

HiElRlal=]

Uhos Tvawt
LA Bazios- Mobwbook

LAB U er-Framework
ngun«-&oc atons
ABuder-Support
ULocks-Osfaut
LALock-Framework
LALOSES- Mo

A Locke-Moty

a) Wl set-oancs

14 @hnstiod | & Herrcty |) Commont| dm RC | £ amnse | A
Wypesly
B acosssorrmubaior) abetrnct

" prm e
W on
W super-oancs

W erpiade
B super-coss-not-wriigsthedpersend [l bad-supersend:
B 2oPcose-not-ance dang W ¥ argument

_updwet | et | aton |

T oY Iregured Intertyoe

psmned hoee [Smalindsosrt best hyps [Sms

1%

BrhedBorder

puUF R ComposedTat
EaytoardProcessor
Latel

PAN LEROWYaE e
Meszaos Channe|
Rangtdap
ReComponing Compos s
Revers ngtapper

e Check

FyOn sal-sends jofsal] super-sanas [depiwon |
a0

beFolder
0N = Folder

—— —— ——————— uW

@ e O chss

Browser [| Clusters

O Browser

BE

HE=mltlal=] 4 4, Herascty | B Comment| dm RC

| O Anakas | @ Cstees |

A

CO N Me-Slreane ;“Mal:m;.t.m.'n ke
Cobectiore-Siring Support
CoNCtione-S uppart

Cobectiore-Teat
Co

e [AZGR L

fALGe i ase T epOmil, declare Yo o

i

race'wakFrom: bisdngeDo changsCapactyTo, aszocabicnsDo, printOng, a2

 —

12

IR0 N6 L N
Computed Cabegorins
Dot dras-Irberace
Cotabase-Support

show clusber uSing: ool e

Dotatarse-Too ke
Drag-And-Orop x

Ba
Bty ktio rery
MRy Set

Set
Wi kD it naey

1007 I hacdirs walis Lol oot uend et |

@ e O chss

Browser || Metrics

O Brower

Sl lal=]

CO N Me-SIreanme
Cobectiore-Siring Support
Co RO ne-S uppart
gl«mwnn

0 G- L Nireiirsnd
Computed Cabegorns
Dotat eI rdermace
Coiabase-Support
Dotabre-Too ks
Drag-And-Orcp

1 a Compmet| bm RO

L of Superclasses:
cof Subclasses:
. of Class Methods:
. of lrstance Methods:
L of Availabie lrstance Methods:
of Availabie Class Methods:
. of Class Yarabhs:
. of irstance Yarabhs:
X Commentod Methods:

B
BenttyO ktio rery

-

Bl

W kD tio naey
Reaponse:
Specialsationindex:

Average Humber of Method Arguime s

| 2 Anatas | $* Chussties |mhm

ey

Junninusl
Juuninunsl
Jan
[EREE
I]

[1555

@ e O chss

Exercises

Use the enhanced browser to
investigate Smalltalk code

Examine class hierarchies based on
extracted reuse contracts

Analyse the code to find methods that
hinder reuse

Explore the different tools

File in your own Smalltalk classes/
frameworks

Up-to-date Information

.

—

http://progwww.vub.ac.be/prog/pools/rcs/

