Contracts as a basis for
stigating reusability of
Smalltalk code

Koen De Hondt
Programming Technology Lab
Computer Science Department

Vrije Universiteit Brussel

@vub.ac.be http:/ progwww.vub.ac.be/

vlew

lems with reuse
ems with evolution
- are reuse contracts?
e contracts at work

1ining class hierarchies based on
' contracts

o contract research
ises: introduction to the browser

do You Reuse a Class?

ng (copy and paste)
itance / method overriding
position / delegation

e by Cloning

[components[Jare not easily
le

pport is provided for adaptation/reuse

tion between original and result

11t to maintain since bug fixes and
des are not propagated to the derived
ation (proliferation of versions)

P This kind of reuse should be avoided

e by Inheritance

Class A
you determine >
| . o
- to reuse (inherit)? SiThes =
- to adapt (override)? \/
- to write from scratch?
Subclass C

A

Subclass D

iple: Make a Subclass of

What to override?
#add: if #addAll; uses #add:

#add & addAll: if #addAll:
does not use #add:

A CountingSet is a Set that
counts all added elements

2 by Composition

you determine

to reuse (what to compose, what to
ate)?

to adapt (how to compose)?
to write from scratch?

Class B
\

Class A /\b

—1] Class C

ing a Class is Hard

OOA /OOD notations do not provide
information to reuse a class

developers do not document how a class
used, they only document what each
does

- comment contains reuse information, it
nas the form of a cookbook

Reusers are compelled to
inspect the source code

cting the Source Code

use a class:

vect the class

vect all its superclasses

vect all the classes it co-operates with

e code inspection is error-prone

irce code inspection doesn [t work:
o the developer (i.e. the expert)!

F are You Looking for?

\ds

onds

t methods w.ms.mm_.,m. Ex.& the
specialisation interface

te methods

methods

s that are overridden frequently
s that are part of a design pattern
ration with other objects/classes

ends are Important

s & template methods & abstract
 reify the design of a class

decomposition

uish [corelImethods from [peripherall’
s

If sends = planning for reuse

vined overriding of methods

ends: Planning for Reuse

_5 VisualWorks 2.5
can be reused with other builders

ymbol
uilderClass new.

sions here”
same external interface

_ (#builderClass is private)
in VisualWorks 2.0
ymbol
Ilder new.

cannot be reused with other builders
T without overriding all methods that

refer to UlBuilder

peration with Other
cts/Classes is Important

ration of responsibilities principle
> delegation= planning for reuse

’stem can easily be extended by adding
v classes

octs with [the same interfacellcan be
stituted for each other

ation: Planning for Reuse

_;,Wm 2.0

Menultem

_mSm:ZoEAm 1.0

_— Strings !

can be reused for
different menu items

same external behaviour
same interface
for instance creation

cannot be reused for
different menu items

vlew

ems with reuse
lems with evolution
- are reuse contracts?
e contracts at work

1ining class hierarchies based on
' contracts

o contract research
ises: introduction to the browser

ttion is Important

ive development
amework is never finished
ging requirements
ctional: user requirements

-functional: maintainability,
ptibility, reusability, customisability, ..

to do When the
ework Changes?

Framework 2.0

Y ¥ B

Evolution

Application

iple Evolution Conflict (1)

Y Y K

Evolution

_ Method capture
— — P> instance of @ —
= suibclass of Application

iple Evolution Conflict (2)

/ ‘ / Framework 2.0
~
N o’ X

Evolution

#p
g
. self send ! Inconsistent methods

— — P instance of
=l c11bclass of Application

Evolution Conflicts

1ce conflicts

name of a reused method /class has been

1ged

ethod that was added by a reuser has been
bduced by the new version of the framework

1cipated recursion

ethod invokes another one in the application
le the new version of the framework introduces
nvocation of the first by the latter

'ing Evolution Problems

s the changes to the framework
ell-documented (informally), the
cation developer is condemned to
rm code inspection to determine

has changed

“evolution contlicts are not spotted
the application is running based on
w version of the framework

F are the Challenges?

ting reuse

an be reused, what must be adapted, and what
e built from scratch ?

documentation on how classes are reused
ting evolution

‘propagation

t for estimates/ testing / metrics

ity of reusing a class
t of [upgrading(the class repository

vlew

ems with reuse

ems with evolution

E are reuse contracts?
e contracts at work

1ining class hierarchies based on
' contracts

o contract research
ises: introduction to the browser

e Contracts

ontracts between the framework
loper and the application
loper

what assumptions can be made
t reusable components

how components are actually
d

e Contract Notation

on based on OMT (UML)

ds are annotated with
isation clauses to make the
isation interface explicit

> operatorsl) or [modifiers() lay
now reuse is achieved

2 Contracts for Inheritance

interface of a class
sation clauses

t changes are made
is subclassed:

specialisation clause
abstract method \

Collection \

#collect: [#do;
#do:

tion/abstraction #select: [#do:]
/ cancellation .
. concretisation
t/coarsening #do:
n clauses may contain .
: Set
thods invoked
mmSQm\ and QC@@HD #collect: [#do:]
#do:
reuse operator | #select: [#do:]

e Operator: Concretisation

hod Collection
bstract methods P

> #do:
#select: [#do:]

t change the
sation clause of concretisation
. #do:
retised methods
Set

preserving

. #collect: [#do:
= abstraction oollas [felol

#select: [#do:]

2 Operator: Abstraction

View

#preferredBounds []
yncrete method NV

SimpleView
#preferredBounds []
oncretisation %

aching

BasicButtonView
#preferredBounds []

abstraction
#preferredBounds

LabeledButtonView

#preferredBounds []

e Operator: Extension

erformed by an

| developer to add Collection
| specific behaviour
methods to the S temsion
" a class "
. #grow

servin
serving —
ancellation

#-[]

#grow []

e Operator: Cancellation

performed by an
n developer to
ehaviour

methods from
ace of a class

reaching
extension

Collection

#add: []
#remove:ifAbsent: []

cancellation
#remove:ifAbsent:

SequenceableCollection

sadd- []

cancellation
#add:

ArrayedCollection

e Operator: Refinement

ents to the
on clause of a

Object

#postCopy []

e refinement

#postCopy [super,
QSSQ&SO% + #breakDependents]
 the behaviour of Model
g method with an
) #postCopy
ehaviour [super, #breakDependents]
serving

oarsening

2 Operator: Coarsening

lements from

isation clause of Collection
#size [#do:]

y ° .

2 coarsening

performance #size [- #do]

aching =

efinement .

e Operators

' a distinction between different
- of inheritance

how a class is derived from its
class

rthogonal basic operators

lly, one subclassing step is a
ination of several reuse operators

iently Used Combinations
use Operators

on & refinement

1ing & cancellation

tisation & refinement

tisation & extension & refinement
1ing & refinement = redefinition

1ing & extension & refinement
1zation

i-Class Reuse Contracts
10rt)

1ting classes are put in one reuse
these classes are called [‘participants(’

s of classes as in reuse contracts for
ce

ation clauses are extended with names
ds invoked on other classes

erators identify what changes are
a whole contract

e Contract Notation

E specialisation clauses participants

/\ |l
__/
#openlnterface: UIBuilder
del Emocqomm_ #add:, T
. #openWithExtent:] - #add:
€ builder| #openWithExtent:
#openlinterface:
[#model:, #displayPendinglpvalidation]
e:
ith:, | ApplicationWindow
\d\aménmcmoncc_am? F———
<<__ﬁ§_ #displayPendinglnvalidation

vlew

ems with reuse

ems with evolution
- are reuse contracts?
e contracts at work

1ining class hierarchies based on
' contracts

o contract research
ises: introduction to the browser

e Contracts at Work

mal nature of reuse contracts
 their use in a development
ment

le generation from reuse contracts

bact analysis when a framework
nges (assessing evolution conflicts)

rt estimation for framework
tomisation

raction from source code

ating Reuse

Framework

#add: []

et | addAll: [#add]

t to override?

3

CountingSet

#add: [super, #incCount]
#incCount []

Application Application

Framework

| /x/\J' Sor |#add: []

Evolution #addAll: [#aRd]

W_ CountingSet

#incCount] @ #add: [super, #incCount]

#incCount [1

Not all additions
are counted anymore

Application vlication

menting Reuse

Framework

#add: []

et | addAll: [#add]

extension
#incCount
refinement
#add: [super,+#incCount]

]

: CountingSet
tincCount]

#add: [super, #incCount]
#incCount []

Application
Application

menting Evolution

X Y

Evolution

¥

Y Y

coarsening
#addAll: [-#add:]

Framework

Set

#add: []
#addAll: [#

Framework

Set

#add: []
#addAll: []

]

ating Impact of Changes

Framework

/ﬂ/ﬁ& Sop |#add: []

coarsening #addAll: []
#addAlf [-#add]

extension
#incCount

= refinement
r,+#incCount] #add: [swger,+#incCount]

@ CountingSet

#add: [super, #incCount]
taddAll: needs to be
overridden too

vlew

ems with reuse

ems with evolution
- are reuse contracts?
o contracts at work

1ining class hierarchies based on
 contracts

o contract research
ises: introduction to the browser

ction of Reuse Contracts

tracts for

osed in a

reuse
operators

—

v

extension

Object

extension

Stream

extension
PeekableStream
concretisation
refinement
extension
PositionableStream
coarsening
extension

I | \te rnalStream

cancellation
concretisation
extension
WriteStream
extension
ReadWriteStream

Viuch Extracted
mation

xtractor does not know which
ods are important

ction with a developer is required
ip implementation details

cting Extracted

| ¥

2l Abstract
skip: {}

Concrete
fileln {close nextChunk skipSeparators peekFor: atEnd

nextChunk {class skipSeparators peekFor: next}

peek {next skip:atEnd}

peekFor. {next skip: atEnd}

skipSeparators{class skip: next}

skipUpTo: {next skip:atEnd}

cting Extracted
etisations

| ¥

= Abstract

Concrete
atEnd {}
contents {}

skip: {}

cting Extracted
ements

| v
21 Abstract
Concrete

nextinto:startingAt: {nextatEnd}
skip: {position:}

cting Extracted

] &

= Abstract
Concrete
displayString {printString}

cting Extracted
ellations

| ¥

= Abstract
next {}
Concrete

'ing Bad Designs in a
> Hierarchy

for design breaching reuse

1tors

y indicate methods that do not respect
design as laid down by a superclass

iine what happens with the
ed methods in reuse operators that
oplied later on

ing Bad Designs: Example

hierarchy is awkward
ext method.

Abstract
ateEnd {}
contents {}
flush {}
isReadable{}
isWritable {}

[next [}
nextPut: {}

Concrete
close {}
contentsSpecies {}

Abstract
Concrete
next {pastEnd}

@[readPosition {position}

ct of Bad Coding Style

oding style is troublesome for the
ctor

only super send, bad super send, ...

has driven us to make qualitative
sment of source code possible

nalysis tool is integrated in our
ser

vlew

ems with reuse

ems with evolution
- are reuse contracts?
o contracts at work

1ining class hierarchies based on
' contracts

e contract research
ises: introduction to the browser

e Contract Research

ontracts have been applied to

5 (inheritance)

‘interacting classes/components
iagrams

nvestigation:

use contracts describe design patterns?
c reuse contracts

tion of multi-class reuse contracts

ire architectures and componentware
contracts in a development environment
locumentation than interfaces and invocations

n Pattern Example

Component |g graphics

#operation A
m_mmﬁ_o:\/ qm::mam:ﬁ operation [operation]
extension
Composite K>—
| P concretisation
-eaf #operation
. #add:
ration
_ #remove: .
#getChild: CompositeA
#operation
#add:
#remove:
#getChild:

nary: Theory

ontracts formally document what
r can assume about a [reusable
1entl

yperators formally document how
ble component is actually reused

rules for change propagation
automatic detection of evolution
S

nary: Practice

e contracts for inheritance can be
cted

mination of existing source code
lerstanding the design

nan input is needed to filter out
lementation details

| coding style may give rise to extraction
blems

vlew

ems with reuse

ems with evolution
- are reuse contracts?
o contracts at work

1ining class hierarchies based on
' contracts

o contract research
1ses: introduction to the browser

yrowser for the Exercises

nade fully-functional browser

sed of reusable [browser part
ents/ Ibuilt with ApplFLab

va\ @m See ESUG96 Summer School

- CApplFLab: Custom-made user
O_ <<Hﬁr OﬁT@H msﬁmﬁmmnmnogﬁo:mamwsﬁmsm;\oﬁwmm

iew / editor

nced Browser || General

Browser

* ; 4 § Definition | @4 Methods | &, Hierarchy | [Comment| A= RC ,

. | v

WS Different views/tools Al contents
_ - =_ hext

1>

[[oea

- >

nmo

readPosition

Method selector

v| |

f {7 Text _ Ve Canvas _ B Menu _ & Image ; Different views

— |

T - pext Different method editors i

<|
>

Answer the the receiver. Fail if
— the collection of this stream is notan Amay ora Skring. Fail if the

uctor stream is positioned at its end, or if the position is out of bounds in the
collection.”

<primitive: G5 Zmﬁroﬁm QO_”OH

position == readLimit
ifTrue: [*self pastEnd]
ifFalse: [“collection at: (position = position + 1)]

ser || [Reuse Contracts

Browser

* | AA‘ B 00333”._. A=RC _ 42 Analysis _MY Clusters __,_H_Zoiom |

Reuse Conltracts Specialisation Interface
v | &]

extension 2l Abstract Al
Object Concrete

extension [displayShing {printSking}
Stream
extension
PeekableStream
concretisation
extension —
refinement Xl {>
PositionableStream Method Text

coarsening v
extension displayString 2l
InternalStream
cancellation ~'some internal shream’
concretisation
extension
WriteStream
extension
Read\WriteStream

rLckor

(€] —— > € =]

ser [1 Code Analysis

Browser

HE
% | 1 & Methods | 4, Hierarchy | B Comment| A= RC _ O Analysis | b

—TAll Mselfsends ™ bped-Iv W primitive
W factory W accessorimutator W abstract W femplate
W super-sends W super-does-not-urmejetbadper-send M bad-super-sends
W self-does-not-undestanizd-by ® self-argument
update | | invet | allon | alof |
v |
H_ gap typed-IY [required interface: {1 assigned types: {Smallinteger; bestbype: { mq.:mw__
¥ v|
1] EN
ally
be CheckMark I
beFolder _
displayOn: self-sends [offsel] super-sends [displayOn]
gap: -
M|
£l 2
beFolder Al
icon = Folder
E—

ser [1 Clusters

Browser
% | Ai. & Hierarchy | B 0033o3~_%m RC ,.%u,p:m_v._mmm @- Clusters b

v |
2l readGeneralSkructureOn;, find Key:ifAbsentRaise:, findKeyOrNil:, declare from:, cj2l
1| [dor includes:, values, collect, occunmencesOr: _

remove:ifAbsent:
raceWalkFrom:, bindingsDo:, change CapacityTo:, associationsDo:, printOn:, ass

£ |2

show cluster using: pjviged Clusters Layer...

{doincludes: yalues,collect: occurrencesOr}

ser |1 Metrics

Browser

EI=]

Ai. B Comment _ A=RC

_ 42 Analysis _W. Clusters 4_.55038 | »

<|

nr.

nr.

nr.

nr.

nr.

nr.

nr.

nr.

of Superclasses:

of Subclasses:

of Class Methods:

of Instance Methods:

of Available Instance Methods:
of Available Class Methods:

of Class Yariables:

of Instance Yariables:

% Commented Methods:

Average Number of Method Arguments:

Response:

Specialisationindex:

3
16
3
45
238

406

0
0
88

2.35556

129
1.33333

'1Ses

he enhanced browser to
tigate Smalltalk code

mine class hierarchies based on
racted reuse contracts

alyse the code to find methods that
der reuse

lore the different tools

n your own Smalltalk classes/
>works

0-date Information

o://[progwww.vub.ac.be/prog/pools/rcs/

