
Software Distribution and Mobility Seminar 2009
Project

e-mail: egonzale@vub.ac.be
office: 10F731

Deadline 22 June 2009.

Cooperation This project assignment is to be made individually. Cooperation is not allowed in
any form.

Delivery Both documentation and code should be delivered in digital format. A mail should
be sent to egonzale@vub.ac.be including “Project SDMS” in the subject line on the day of the
deadline before 16:00. You should also indicate the AmbientTalk build used.

1 Assignment: The AmbiScrabble Game

The purpose of this exercise is to create a digital decentralized distributed version of a word
game similar to Scrabble. This game works as follows: a number of players work collaboratively
to create words out of “virtually lettered tiles”. Players are organized in teams and each player
has a rack of letters. The goal of the game is to consume all the letters of the team by forming
words. In other words, the team that first consumes all its letters wins.

When two players of the same team are in communication range, they can see each other’s
letters. A player can then request particular letters of another team member to form a word.
Once a player forms a word, half of the letters forming the word get consumed for his/her team.
The player gets the opportunity to throw the other half of the letters to nearby opposite team
members. Those thrown letters get also consumed for the team when the opposite team members
acknowledge the letter(s) reception. If a player does not form a word for a while, a new letter
gets added to his/her rack.

When a player starts the AmbiScrabble application, he/she chooses a team. The application
automatically generates a rack of (random) letters for that player. When two or more players of
the same team are in range, they can start forming words. Once a game has started other peers
can join the game, incrementing the number of letters of that the team has to consume to win.

2 Non-Functional Requirements

There are some requirements w.r.t. the distributed design of the game.

1. It must be implemented in AmbientTalk. As in the lab sessions, you can employ the sym-
biosis between Java and AmbientTalk to make use of Java classes for e.g. your data struc-
tures (e.g. Vector, Hashmap, etc..). However, all distributed communication must be im-
plemented in AmbientTalk. In other words, you cannot use Java RMI as your distributed
computing framework. Make sure that your Java code (if any) is at least compatible with
version 1.5.

1



3 TESTING AND REPORT

2. The game should be designed in a peer-to-peer fashion. You cannot assume a centralized
server in your design to coordinate the game, e.g to discover new players or to keep track
of game state (e.g. the consumed letters of each team).

3. The game should be fault-tolerant such that failing computational units do not hamper the
game from being played. You must assume that every computational unit in the network
can fail at any point in time.

Hints:

• Player disconnections should not hamper the game progress. For example, if a player
disconnects, the other team members can continue forming words.

• Message sends to remote peers can fail. Note that failures are unreliably detected
using timeout as a heuristic.

4. Players may enter and leave the network at any point in time. However, you may assume
that player disconnections are temporal. If a player disconnects, other players may have
outdated game information, for example, about the state of his/her rack of letters. The
game information should get properly updated once players come online again.

5. Words are validated by means of a dictionary. You may use the provided dictionary.at
module.

6. You may assume that there is only one game that is being played at a time.

Extra requirements (not obligatory):

• Explore team constraints to make the game more fair, challenging, competitive, etc.. For
example, the application could adapt time period rates for the appearance of letters so that
small teams get less letters, or the time to form words so that bigger teams get less time.

• Validate the words by achieving consensus amongst nearby players. For example, the
player needing to validate a word may start a poll with all nearby players.

• Weaken the game assumptions. For example, adapt the application to take into account
permanent disconnections of players.

3 Testing and Report

Besides implementing the application, you also have to create interesting scenarios to test your
implementation. These test scenarios show how your application behaves w.r.t. the different
operation modi. Note that you can implement them using a GUI in Java, a testcase in the Ambi-
entTalk unit testing framework, or whatever other means you may find convenient to test your
application. Keep in mind that the distributed design should be the focus of your project! You
don’t have to have a fancy GUI to test your application, i.e. GUI is of no importance.

You will write a small report about this project. This report must be no longer than 10 pages
and serves as a guide for evaluating the implementation of your project. The report should
include following items:

1. What were the important cases and choices (w.r.t. distributed aspects) to consider for this
project?

2. An overview of your implementation and how the implementation fulfills the require-
ments.

3. A small “manual” about how to run and test your application and explanation of the test
scenarios.

2



4 EVALUATION

4 Evaluation

The project is taken into account for half of your final score for the SDM seminar. It will be
evaluated mostly on good distributed object-oriented design. What is important:

• You should aim to fully exploit a peer-to-peer organization and a fault-tolerant design.

• Quality and structure of the code is important.

• In your testing, you should focus on trying the application from the distributed point of
view.

Being creative and adding additional requirements of your own or any of the extra require-
ments to the project is appreciated.

Good luck!

3


