
1 LEADER ELECTION

e-mail: egonzale@vub.ac.be
office: 10F704

1 Leader Election
Language available at http://prog.vub.ac.be/amop/at/download

1.1 The Paper-Scissor-Stone Game
The purpose of this exercise is to create a digital decentralized distributed version of the paper-scissor-stone
game. This game works as follows: a number of clients join in a session and have to choose paper, scissor
or stone. Depending on the choices one wins or loses the game:

• A choses scissor and B choses paper, then A wins. A gets one point and B loses one point.
• A choses scissor and B choses stone, then B wins. B gets one point and A loses one point.
• A choses paper and B choses stone, then A wins. A gets one point and B loses one point.
• in all other cases we have a draw (no winner). A and B’s scores remain the same.

The game should also be playable with more than two people. For this the choices of all players are com-
pared to one another one-by-one and using the decision rules described above.

After each round in the game the winner(s) of the game are displayed on each peer that participated
in the game. After playing a game the scores remain (they are not reset). Once a game has started no
other peers can enter the game until the outcome of the game is decided and a new game starts. When a
participating peer fails while a game is in progress the game should continue but the choice of the failed
peer should be disregarded.

1.2 Non-Functional Requirements
There are some requirements w.r.t. the distributed design of the game.

• It must be implemented in AmbientTalk. As in the lab sessions, you can use the symbiotic relationship
between Java and AmbientTalk to make use of Java classes for e.g. your data structures (e.g. Vector,
Hashmap, etc..). However, all distributed communication must be implemented in AmbientTalk. In
other words, you cannot use Java RMI as your distributed computing framework.

• The game should be fault-tolerant such that failing computational units do not hamper the game from
being played. You must assume that every computational unit in the network can fail at any point in
time.
Hints:

– As a starting point you could implement the game in client/server style. In this style one actor
plays the role of the coordinating server, which is responsible for collecting the answers and to
decide the outcome of the game.

– In order to make the whole fault-tolerant you should consider a peer-to-peer organization. As
seen in the lab session, peer-to-peer architecture differs from a client/server approach in that
every peer supports the same behavior. Hence, in the context of this game every peer should be
able to act as the server.

– Using a leader election protocol one peer can be selected to act as the server that coordinates
the game. If that peer should fail another peer has to be selected to act as the coordinator and
assume the role of the broken peer.

• Players may enter and leave the network at any point in time.
• Note that failures are unreliably detected using timeout as a heuristic.
• The scores (and thus the winners) of the game should remain consistent in server (i.e. the peer acting

as the coordinator) irrespective of the peer who decides the outcome. In other words, if the peer who
decided the outcome gets disconnected and another peer is elected as the coordinator, the later should
keep properly the scores.

• You may assume that there is only one game that is being played at a time.
• Quality and structure of the code is important.

1



1.3 Testing and Report 1 LEADER ELECTION

1.3 Testing and Report
A second part of the assignment is to create interesting scenarios to test your implementation. These test
scenarios show how your application behaves w.r.t. the different operation modi. Note that you can im-
plement them using a GUI, a testcase (making use of the AmbientTalk unit testing framework) or whatever
other means you may find convenient to test your application, but the distributed design should be the
focus of your project.

You will write a small report about this project. This report must not be longer than 10 pages and serves
as a guide for evaluating the implementation of your project. The report should include following items:

1. What were the important cases and choices (w.r.t. distributed aspects) to consider for this project?

2. An overview of your implementation and how the implementation fulfills the requirements.

Note: this project assignment is to be made individually! Cooperation is not allowed in any form.

Deadline 20 June 2008.

Delivery Both documentation and code should be delivered in digital and paper format. On the day
of the deadline a box in which you can deposit the paper version will be placed at 10F704. The digital
version should be sent to egonzale@vub.ac.be including “Project DMS” in the subject line and indicating
the AmbientTalk build used. Both paper and digital version of the project should be delivered on the day
of the deadline before 16:00.

Veel succes!

2


