
Software Distribution and Mobility Seminar 2010
Flikken

e-mail: egonzale@vub.ac.be
office: 10F731

Deadline 21 June 2010.

Delivery Both the documentation and code of your project should be delivered via the drop
box of Pointcarre in the form of a <name>-project.zip file on the day of the deadline before 16:00.

1 Project Assignment

The purpose of the project is to implement the Flikken game. You have already implemented a
small functionality of it during the lab session 3/7. The project’s aim is to grow that exercise into
a playable application. Flikken is a virtually augmented game in which players equipped with
mobile devices interact in the physical environment augmented with virtual objects. Players are
organized in two teams which determine their role in the game. The policemen work together to
shoot down dangerous gangsters on the loose before they achieve their goal of earning 1 million
euro by committing crimes. What follows are the rules of the game for this assignment.

When does the chase start? At the start of the game, both the policemen and the gangsters are
in their headquarters (HQ). When a gangster leaves his HQ, the policemen HQ is informed
which in turn informs the policemen present there and the chase starts.

How can gangsters commit a crime? Gangsters know the location of places with large amounts
of money (e.g banks, casinos, etc.). In order to commit a crime and get the reward, a gang-
ster needs to collect burgling equipment around the city (e.g knives, explosives, guns, etc.).
When the gangster is nearby a place of crime, he can commit the crime if he has the neces-
sary burgling items. He loses the items but gets the reward. When a gangster commits a
crime, policemen are informed of the location of the crime and the amount of money stolen.

How can policemen shoot down gangsters? Players can see the position of all nearby team mem-
bers. Additionally, both gangsters and policemen are periodically informed of each other’s
positions (e.g. every 5 minutes players can see the position of opposite team members). Po-
licemen get a gun with 3 bullets at the start of the game. When a policeman sees a gangster,
he can shoot him and the gangster may die if he is within the damaging area of the bullet1.
If a policeman doesn’t have more bullets, he can return to his HQ and get more.

How can gangsters defend themselves? Gangsters get a (non-rechargeable) gun with 3 bullets
at the start of the game. Additionally, a gangster gets three items for his defense when
the game starts: a gas bomb (which kills anybody in a determined radius where it was
dropped for a period of time), a radio jammer (which disrupts the connectivity of the nearby
policemen, preventing them to know his location) and a bulletproof vest (which protects

1To keep it simple, assume that a bullet kills the first person reached within a certain radius where it was shot.

1



3 TESTING AND REPORT

him for a time interval against one single shot). He can also pick up more items in the game
area when he is nearby.

2 Non-Functional Requirements

There are some requirements w.r.t. the distributed design of the game.

1. The application should be fault-tolerant such that failing computational units do not ham-
per the game from being played. You must assume that every computational unit in the
network can fail at any point in time. More concretely:

• Players may enter and leave the network at any point in time. While a player is discon-
nected, he and the other players can continue playing. Hence, he may pick up virtual
items and commit crimes.

• The game state should remain consistent in the presence of player disconnections.
When a player reconnects, game state should be reconciled. For example, a virtual
item denotes a unique object so that if a player already picked a virtual item up, a
player reconnecting to the game shouldn’t see this item anymore.

• In order to make the application fault tolerant, you should exploit as much as possible
a peer-to-peer organization. However, you may assume the presence of a device at the
HQs for bootstrapping the game. This device may act as server providing players with
necessary information to play the game when they move out of the HQ. For example,
when the game starts, the gangsters HQ could provide gangsters with the necessary
equipment and the location of crime targets. However, keep in mind that virtual items
should only be visible to the gangsters when they are nearby it (even if their device
carried the information about it from the start).

• Message sends to players can fail.

2. Note that failures are (unreliably) detected using timeout as a heuristic.

3. Two entities (e.g. virtual items, players, etc) can be considered to be nearby each other if
their locations are within a certain radius.

4. You may assume that there is only one game that is being played at a time.

3 Testing and Report

Besides implementing the application, you also have to create interesting scenarios to test your
implementation. These test scenarios show how your application behaves w.r.t. the different
operation modi. In order to test those scenarios, you can extend the Java GUI or the AmbientTalk
unit tests provided in the lab session 3/7, or you can implement whatever other means you may
find convenient. Keep in mind that the distributed design should be the focus of your project.

You will write a small report about this project. This report must be no longer than 10 pages
(excluding figures or diagrams) and serves as a guide for evaluating your project. The report
should include:

1. An overview of your application and how the implementation fulfills the requirements.

2. What were the important cases and design choices (w.r.t. distributed aspects) to consider
for this project?

3. Description of test scenarios and behaviour of your application.

4. A small “manual” about how to run and test your application.

5. Which AmbientTalk build you used.

2



4 EVALUATION

4 Evaluation

The project counts for half of your final score for the SDM seminar. It will be evaluated mostly
on good distributed design. What is important:

• You should aim to fully exploit a peer-to-peer architecture and have a fault-tolerant design.

• The testing should be focused on trying the application from the distributed point of view.
You don’t have to provide a fancy GUI to test your application, a testcase in AmbientTalk
is as valid. In other words, the GUI is of no importance.

• The quality and the structure of the code are important.

• The project must be implemented in AmbientTalk. As in the lab sessions, you can exploit
the symbiosis between Java and AmbientTalk to make use of Java classes for e.g. your data
structures such as a Hashmap. However, all distributed communication must be imple-
mented in AmbientTalk. In other words, you cannot use other technologies (e.g. Java RMI)
as your distributed computing framework.

• Make sure that any Java code is compatible with version 1.5.

• This project assignment is to be made individually. Cooperation is not allowed in any form.

Being creative and implementing additional functionality of your own will be appreciated.

Good luck!

3


