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Abstract. As models grow in use for developing systems, transformation between 

models grow in importance. University and industry are seeking for effective and 

efficient ways to treat transformation as first-class assets in Model Driven 

Engineering (MDE). In order to produce new and more powerful transformations, 

we argue that the semi-automatic generation of transformation rules is an 

important challenge in future MDE development to make it easier, faster, and cost-

reduced process. In this paper we propose to discuss metamodels matching as a 

key technique for a semi-automatic transformation process. We review and discuss 

the main approaches that have been proposed in the state of the art for metamodels 

matching. We compare two recent algorithms of metamodel matching namely 

“Similarity Flooding” and SAMT4MDE+ using match quality measures proposed 

for schema matching in databases. A Plug-in under the Eclipse framework has 

been developed to support our comparison using three couple of metamodels. 

Keywords: Metamodel matching, Model transformation, semi-automatic 

transformation process 

1 Introduction 

Research and practice for Model Driven Engineering (MDE) have significantly 

progressed over the last decade for dealing with the increase of complexity within 

systems during their development and maintenance processes by raising the level of 

abstraction using models as a core development artifact. New significant approaches, 

mainly Model Driven Architecture (MDA) [1] defined at the OMG (Object Management 

Group), “Software Factories” proposed by Microsoft [2] and the Eclipse Modeling 

Framework (EMF) [3] from IBM, are born and have been experimented. In the 

literature, several issues around MDE have been studied and subjected to intensive 

research, e.g. modeling languages [4] [5], model transformation [6] [7], mapping 

between metamodels [8] [9], and design methodologies [10]. Among these issues, model 

transformation languages occupy a central place and allow the definition of how a set of 

elements from a source model are analyzed and transformed into a set of elements in a 

target model. However, these transformations are created manually, often a tedious and 

error-prone task, and therefore an expensive process. These transformations consist of 

creating a set of rules involving, and at the same time merging, mapping and 

transformation techniques between two metamodels. A semi-automation of the 

transformation process leads to a real challenge allowing many advantages: It enhances 

significantly the development time of transformation and decreases the errors that may 

occur in a manual definition of transformations. In [9][11]the authors have initiated a 

first attempt towards this semi-automation. They introduced an approach separating 
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mapping specifications from transformation definitions, and implemented this approach 

in a tool called Mapping Modeling Tool (MMT). In this first approach, a mapping 

specification was created manually to define the relationships between metamodels (i.e. 

equivalent metamodel elements), with the transformation definition being generated 

automatically from the mappings.  

In [12], the authors have proposed to push the semi-automation process one step 

further by using matching techniques [13] to semi-automatically generate mappings 

between two metamodels. The produced mappings could then be adapted and validated 

by an expert for the automatic derivation of a transformation model, as a set of 

transformation rules.  Thus, matching techniques between metamodels are the 

centerpieces for a semi-automatic transformation process in MDE and particularly in 

MDA. In fact, metamodels matching allows discovering mappings between two 

metamodels and the mappings allow in turn generating transformation rules between two 

metamodels. However, there has been little research in metamodel matching in contrast 

to the ontology [14] and database [15] domains, where an intensive research has been 

conducted. In this paper, we firstly discuss the techniques and foundations of schema 

matching that has been extensively studied in the database area, and then we review the 

main different approaches that have been proposed for metamodel matching in the 

context of MDA/MDE. We compare two recent algorithms of metamodel matching 

namely “Similarity Flooding” and Extended SAMT4MDE (noted SAMT4MDE+) using 

match quality measures proposed for schema matching in databases. A Plug-in under the 

Eclipse framework has been developed to support our comparison using three couples of 

metamodels. 

We will start by stressing the role of matching techniques in the semi-automatic 

process of model transformation.  

 

This paper is organized as follows: section 2 introduces the main concepts and 

techniques for a semi-automatic transformation process, presents schema matching 

techniques and situates them in the context of metamodel matching. Section 3, reviews 

and compares five approaches that have been proposed for metamodel matching in the 

context of MDA. Section 4 presents the two recent algorithms for metamodel matching 

and section 5 discusses an experimental comparison between these two algorithms using 

three pairs of metamodels. Section 6 presents ourprototype implemented as a plug-in for 

Eclipse. Finally, section 7 concludes our work and presents some final remarks and 

perspectives. 

2 Metamodels matching for model transformation  

2.1 Metamodels matching for model transformation: Overview 

It is well recognized today that model transformation is one of the most important 

operations in MDA [16]. The following definition of model transformation, largely 

consensual, is proposed in [17]:  

“A Transformation is the automatic generation of a target model from a source 

model, according to a transformation definition. A transformation definition is a set of 

transformation rules that together describe how a model in the source language can be 

transformed into a model in the target language. A transformation rule is a description 

of how one or more constructs in the source language can be transformed into one or 

more constructs in the target language”. 



 

 

However, we point out two main problems concerning the MDA transformation 

process. 

 The first problem concerns the manual creation of “transformation rules” between 

metamodels. Generally, this task is tedious and error-prone, and therefore expensive 

in terms of efficiency [18]. Moreover, writing the transformation rules requires a 

good mastery of both the transformation language and the source and target 

metamodels, in order to express the correspondence both from a structural and a 

semantic point of view. 

 

 The second problem concerns the specification of these “transformation rules”, which 

merge together techniques of mapping and transformation without an explicit 

distinction between them. That is to say, the specification of correspondences 

between elements of two metamodels and the transformation between them are 

grouped in the same component at the same level.  

In the MDA context, and according to previous works [9][19], the concepts of 

mapping and transformation should be explicitly distinguished, and together could be 

involved in the same process that we call transformation process. In fact, in the 

transformation process, the mapping specification precedes the transformation 

definition. A mapping specification is a definition of the correspondences between 

metamodels (i.e. a metamodel for building a PIM (Platform Independent Model) and 

another for building a PSM (Platform Specific Model)). This definition is largely 

obtained by a matching process between two metamodels, and completed by an expert. 

Transformation definitions contain an explicit description of how to transform a model 

into another using a transformation language. Transformation definitions are a set of 

rules that are obtained automatically from all the mappings between two metamodels. 

Hence, in our approach the transformation process of a PIM into a PSM can be 

structured in two stages: a mapping specification obtained by a matching process and 

completed by an expert, and a transformation definition derived automatically from the 

mappings. 

 

The Fig. 1 illustrates the main concepts and techniques involved in a semi-automatic 

transformation process. The matching operation is the process that produces the potential 

mappings between two metamodels. Generally, this task implies a search of equivalent 

or similar elements between two metamodels. Given that no generic matching solution 

exists for different metamodels and application domains, it is recommended to give the 

human expert the possibility to check the obtained mappings, and, if necessary, update 

or adapt it.  This is one of the steps in the whole process, in which the expert intervenes 

to complete and validate the obtained results. Finally, a transformation model (a 

program: a set of rules), is derived automatically from a mapping model. A 

transformation model is basically represented by a set of rules that states how elements 

from source metamodel are transformed into elements of target metamodel. A 

transformation model (program) takes a source model defined by designers or and 

produces an equivalent target model on a specific platform. 



 

 

 

 

 

 

 

 

 

 

Fig.1. Semi-automatic transformation process. 

Two important operations (dashed arrows) adaptation (1) and derivation (2) allow 

linking and completing the two main operations (matching and transformation) in the 

whole process of transformation. Adaptation is the responsibility of the expert user who 

should accept, discard or modify the obtained mappings, furthermore, to specify the 

correspondences which the matcher was unable to find. Loosely speaking, the mapping 

and matching techniques (models) could be defined with the following intuitive formula:   

 

Mapping = Matching + Adaptation 

(1) 

The mapping model obtained in the previous step after adaptation by the expert user 

should be completely defined allowing an automatic generation of transformation model. 

This operation is called derivation and, in the same way as above, transformation and 

mapping models can be defined with the following intuitive formula: 

Transformation = Mapping + Derivation                    (2) 

2.2 From schema matching to metamodel matching 

Matching between metamodels are the centerpieces for a semi-automatic transformation 

process in MDE, particularly in MDA. Matching techniques have been studied in 

various research domains, including digital libraries, ontologies, agent matchmaking, 

schema integration and evolution in databases [14] [19]. In the context of MDE, we can 

find few works in the literature that address the problem of metamodels matching. 

Schemas in the context of databases and metamodels in our context of MDE are closely 

related, hence, we propose to review the different approaches of schema matching, and 

after that we situate these approaches in our context of metamodeling matching. 
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2.2.1 Classification of schema matching approaches 

In the literature, several schema matching approaches have been proposed [14] [19]. 

Each schema matching approach has its own characteristics that were grouped in a 

taxonomy discussed below [18] [20]. In addition, each approach has been evaluated 

through match quality measures discussed in the next section 2.2.2.  

 Individual matcher approaches use only one matching criterion. They are classified 

in: 

     – Schema-only based, when they consider only metamodels. They can be classified 

in: 

 Element level, the mapping is realized for each individual element. It can be 

classified in linguistic and constraint-based. Linguistic are based on name 

similarity, description, global namespace, while constraint-based are based on 

type similarity and key properties. 

  Structure-level, the mapping is realized considering the combinations of elements 

related in a structure. It is only classified in constraint-based that use graph 

matching. 

  – Instance/contents-based, when they consider only instances (or models). It can also 

be classified in element-level. This last can be classified in linguistic and constraint-

based. In this case, linguistic is based on word frequencies and key terms present in 

the element instances, while constraint-based is based on value pattern and ranges of 

the element instances. 

 Combining matchers use multiple matching criteria. They can be classified in: 

    – Hybrid, they combine multiple approaches to create only one matcher in order to 

produce a result, i.e. the creation of mapping between elements. 

   – Composite, they combine many results obtained from different approaches in order 

to produce the mapping between elements. This combination of results can be 

manual or automatic. 

2.2.2 Matching quality Measure 

The interrelationships between metamodels can be organized in sets which can be 

manually or automatically created. A set created manually can contain all needed 

matches (i.e. matched elements); while a set created automatically can contain valid and 

non-valid matches. The first set is denominated real matches, and the later derived 

matches (cf. Fig.2). 

 

 

 

 

 

 

 

Fig.2. Comparing real matches and automatically derived matches. 
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In addition, other subsets are defined as follows [14] [20]: 

 

- A (false negatives) are matches needed but not automatically identified. 

- B (true positives) are matches which are needed and have also been correctly matched 

by the automatic match operation. 

- C (false positives) are matches falsely proposed by the automatic match operation. 

- D (true negatives) are false matches which have also been correctly discarded by the 

automatic match operation. 

Based on the cardinalities of these sets, the following match quality measures are 

provided as parameters for benchmarks: 

Precision =  
CB

B


 

(3) 

reflects the share of real correspondences among all found ones. 

Recall =
BA

B


 

(4) 

specifies the share of real correspondences that are found. 

F-Measure = 2 *  
callecision

callecision

RePr

Re*Pr


 

(5) 

Overall = Recall * (1 - 
ecisionPr

1
)  

(6) 

 

All these measures were developed specifically in the schema matching context [18] 

[21]. We can notice that F-Measure represents the harmonic mean of Precision and 

Recall. The main underlying idea of Overall is to quantify the post-match effort needed 

for adding missed matches and removing false ones.  

2.2.3 Metamodel Matching versus schema matching 

Our aim is not to compare schema matching approaches with those of metamodel 

matching. The main reason is that the technological spaces of both approaches are not 

the same. A technological space [22] is a working context with a set of associated 

concepts, body of knowledge, tools, required skills, and possibilities. It is often 

associated to a given user community with shared know-how, educational support, 

common literature and even workshop and conference regular meetings. Although it is 

difficult to give a precise definition, some TSs can be easily identified, e.g. the XML TS, 

the DBMS TS, the abstract syntax TS, the meta-model (OMG/MDA) TS, etc. In one 



 

 

case, in schema matching efforts have been made mainly in the context of databases and 

involve ER schemas. In the other case, metamodel matching focuses on UML OMG 

standard which is structurally and semantically richer than ER schemas. Moreover, the 

level of abstraction of metamodels and schemas is not the same. However, techniques 

known and used to find semantic correspondences between the elements of two schemas 

are to be applied to the metamodel matching problems since the aim “finding semantic 

correspondences” is still the same. We can say that metamodel matching techniques 

would probably subsume schema matching techniques from the fact that a technological 

space of metamodels includes the technological space of schemas in database area. Thus 

metamodel matching techniques will probably become a generic solution to many 

problems of matching; that we can call the X-matching.  

3 A brief  review of Metamodel Matching Techniques 

Table 1 gives a summary of an evaluation of five approaches of metamodels matching.  

These approaches are: Similarity Flooding (SF), ModelCVS project, Semi-Automatic 

Matching Tool for MDE (SAMT4MDE), Generic Model Weaver (AMW) and an 

extended SAMT4MDE (SAMT4MDE+). On the left hand side of table 1 we can see all 

the features used for the evaluation. 

 

A detailed discussion concerning this evaluation is presented in [13]. According to the 

comparative study presented in Table 1 we have drawn the following conclusions: 

 Only two approaches namely: Similarity Flooding and SAMT4MDE+ are exclusively 

concerned with the problem of metamodels matching in the context of MDA ( the 

other three approaches are based on matching patterns in databases and ontology), and 

they are the most recent algorithms, 

 

 These two approaches give the most effective quality measures, 

 

  They operate semi-automatically despite the fact the expert intervenes to validate the 

matched elements.  

 

 Similarity Flooding and SAMT4MDE+ use the MDA technological space (UML, 

MOF) for metamodels of any size.    

 

We have also deduced the following conclusions:   

 

 The Similarity Flooding algorithm is more suitable usually with metamodels of small 

size, 

 

 We also note that the quality measures will be very weak if the correspondence is 

between two metamodels of largely different size. 

All these details, remarks and findings lead us to carry an experimental comparative 

survey between the two approaches of Similarity Flooding and SAMT4MDE+ using the 

same pairs of metamodels. In order to achieve this task, we rely on quality measures 

presented in section 2.2.2. 

  



 

 

Table 1. Summary of the evaluations. 

 SF ModelCVS SAMT4MDE AMW SAMT4MDE+ 

References [21]&[23] [20] [19] [18] [24] 

Test problems 

Tested Schema types XML/SQL DDL 
Relational/RDF/ 

UML/ Ecore 

UML1.4/UML 2.0  Object-
oriented 

model: UML, 

Java, and C-
Sharp 

SQL DDL 
Relational/  

UML 

UML 2.0/ Ecore 

Schema / Schema tasks 18/9 - 2/1 - - 

Min /Max / Avg  schema 

size 

5/22/12 Large schema  Very large 

schema 

- 

Min /Max / Avg schema 

similarity 

0.46/0.94/0.75 - Schema 

similarity=0.79 

- Schema 

similarity=0.68 

Match result representation 

Matches Element-level correspondences 
between similarity value in [0.1] 

With discrete 
value {0,1,-1} 

 

 Similarity value in 
[0.1] 

Element Repr Node Models/Metamodels Node Models or 

Metamodels 
Data 

Class 

Local/Global Cardinality 1:1/m:n 1:1/m:n 1 :n - 1:1/m:n 

Quality of measure And test methodology 

Employed Quality 
Measures 

Overall Precision, Recall,  
F-measure 

Precision, 
Recall, 

Overall, F-

measure 

Element 
similarity*, 

Link filtering, 

Link rewriting. 

Precision, Recall, 
Overall, F-measure 

Subjectivity 7 user/ 6 

configurations 

10 scenarios and 13 

tools settings 

02 Fragments 

of 

UML and C#  

metamodels 

A set of input 

metamodels  

1 class and its 

neighbor classes 

Pre-match effort None None  None None None 

Studies Impact on match 

Quality 

Filters, fix-point 

formulas, 
randomizing 

initial similarity 

F-Measure: 

IF>0.5: positive 
benefit  

IF<0.5: negative 

Benefit  

  Threshold 

Best average Match quality 

Prec/ Recall ** 

 

0.63/0.58 0.79/0.68 - 0.84/0.90 

F-measure 0.61 0.73 - 0.87 

Overall ˜0.6 - 0.49 -   0.73 

Evaluation high light 

 User 
subjectivity, no 

pre-match effort 

no pre-match effort Representative 
metamodels 

for developing 

information 

system 

no pre-match 
effort 

no pre-match effort 

Application Area Database and 

ontologies 

Database and 

Structural Modeling 

languages 

Model 

transformation 

Model 

transformation 

Model 

Transformation 

Manual work of user Choice of 

metamodels to 

align, Evaluate 
matching 

suggestions 

produced by 
algorithm. 

Including ontology 

creation tools, query 

tools, matching 
tools, and 

Reasoning tools. 

  Evaluate matching 

suggestions 

produced by 
algorithm 

Match granularity Element  level 

Mapping 

Schema-level  

Matching 

Schema-level  

Matching 

- - 

*   Contains element to element similarity and structural similarity 

** Change from configuration to another 



 

 

4  Similarity Flooding versus SAMT4MDE+ 

4.1 Similarity Flooding 

Similarity Flooding in [21] is a generic alignment algorithm that allows calculating the 

correspondences between the nodes of two labeled graphs. This algorithm is based on 

the following intuition: if two nodes stemming from two graphs have been determined as 

similar, therefore, there is strong probability for the neighboring nodes to be similar, too.  

More precisely, SF applies five successive phases on the labeled graphs which have been 

provided at the input phase. This algorithm is applied after the transformation phase that 

consists in transforming the MMsource and the MMtarget to the directed labeled graphs 

Gsource and Gtarget. Along this phase a set of six strategies to encode the metamodel 

into such a graph has been used. Each of these strategies has got its proper techniques to 

transform these two models into a graph and they are explained in [21]. 

In this paper we consider only three tree strategies of encoding namely: Standard, 

Saturated and Flattened, despite the fact that they have given the best quality measures 

[21]. 

4.1.1 The Standard Configuration 

 

According to [21] the Standard configuration extends the Basic configuration to obtain 

similarities not only inspecting the names of the elements, but also their types, and main 

attributes (abstract for the EClass, lowerBound and upperBound from EAttribute and 

EReference, and containment from EReference). In that purpose, a node representing an 

element E is linked by an arc labeled kind to a node N representing the type of the 

element E. N is labeled according to the type of the element E, removing the prefix "E" 

for all the elements of Ecore, and adding the suffix "Element" (e.g. EClass is turned into 

ClassElement). To deal with the main attributes, when an element E has for type a meta-

class with an attribute A, then the node corresponding to E is linked with an arc labeled 

A to a node whose label is the value of the attribute A for E. For example, to represent 

an abstract EClass myEClass, the node representing myEClass is linked with an arc 

labeled abstract to a node labeled true. The left side of Fig. 5 in [21] shows an excerpt of 

the graph exGsource generated using the Standard configuration.  

 

4.1.2 The Flattened Configuration  

 

In [21] the flattened configuration is based on the Standard one, but with flattened 

inheritance. The nodes representing abstract EClasses and the arcs labelled supertype are 

deleted. Instead, arcs labelled own (resp. ref ) connect nodes representing an EClass Ecl 

to nodes representing the EAttribute (resp. EReference) defined by Ecl and all its 

superclasses. Moreover, when an EReference Eref is typed by an abstract EClass Ecl, a 

type arc is created from the node corresponding to Eref to each non-abstract sub-class of 

Ecl. 

 

 



 

 

4.1.3 The Saturated Configuration  

 

The Saturated configuration according to [21] is still based on the Standard one. Here, 

the transitive relations are saturated, like in [25]. EClass nodes are now connected by a 

supertype arc to the nodes representing all the super-classes of this EClass. EClass nodes 

are also connected by own (resp. ref) arcs to the nodes representing the EAttribute (resp. 

EReference) introduced and inherited by the EClass. Finally, for a node representing an 

EReference, type arcs are created to the node representing the EClass that types the 

EReference as well as all the nodes representing the super-classes of the EClass. 

 

4.2 SAMT4MDE+ 

In [24] a new metamodel matching algorithm of that uses structural comparison between 

a class and its neighbouring classes in order to select the equal or similar classes from 

source and target metamodels. The proposed algorithm for metamodel matching called 

SAMT4MDE+  is an extension and enhancement of the algorithm presented in [26] and 

it is implemented in the Semi-Automatic Matching Tool for MDE (SAMT4MDE) which 

is capable of semi-automatically creating mapping specifications and making matching 

suggestions that can be evaluated by users. This provides more reliability to the system 

because mapping becomes less error-prone. The algorithm proposed can identify 

structural similarities between metamodel elements. However, sometimes elements are 

matched by their structures but they do not share the same semantic. The lack of 

semantic analysis leads the tool to find false positives matches, i.e. derived 

correspondences that are not true. 

The function similarity (c1,c2) is the weighted mean which has as parameters 

basicSim (c1,c2) and structSim (c1,c2) with the weights coefBase and coefStruct, 

respectively. It returns continuous values representing the similarity level between c1 

and c2. 

The weights are coefBase and coefStruct that added result in 100%, or 1(one). 

For example, if coefBase is equal to 0.3, then coefStruct must be equal to 0.7. The 

value of similarity (c1,c2) is compared to a threshold value in the range [0,1]. If a 

similarity is greater than threshold value, the classes c1 and c2 are correspondent, 

otherwise they don’t correspond. Thus, threshold is an important measure to take a 

decision: if the value is low, in general in the range [0, 0.5], many elements will be 

considered correspondent in a wrong way (false positive), if the value is high, in general 

in the range [0.8, 1], many classes will not be considered as correspondent (false 

negative).  

According to [24] the similarity function between two classes c1 and c2 is given by: 

 

similarity(c1,c2) = basicSim(c1,c2) * coefBase+structSim(c1,c2) * coefStruct (7) 

 

where 0 <= coefBase<=1, 0<=coefStruct<=1,  and coefBase + coefStruct = 1. 

  



 

 

5 Comparative study and First Experiments 

In order to achieve a comparative study between the two approaches for metamodels 

matching (SF and SAMT4MDE+), we have used three pairs of metamodels among the 

following list: Ecore, Minjava, UML, Webml, and er_ODM. These metamodels are 

presented in details in [27].Three alignments have been considered for our comparison: 

 

 Ecore 2 Minjava 

 Ecore 2 UML 

 Webml 2 er_ODM 

 

To achieve an experimental survey, we developed a java plug-in in under eclipse. 

This plug-in allows to help the user to choose the algorithm to execute. Every algorithm 

will be evaluated for each of the couples of the three couples of metamodels: 

Ecore2Minjava, Ecore2UML2.0, and ER-ODM2WebML.    

The results of the experimentation of the two algorithms Similarity Flooding and 

SAMT4MDE+ are given by Fig. 3 and Fig. 4. The assessment of the first algorithm is 

done according to the three configurations: Standard, Flattened, and Saturated (since 

they gave good results in [21]) on the three couples of metamodels Ecore2Minjava, 

Ecore2UML2.0 and, ER-ODM2WebML. The second algorithm is evaluated on the same 

pairs of metamodels.   

According to Fig 3 and Fig 4 we note that the values of the quality measures vary 

according to the size of the metamodels and configurations used in Similarity Flooding. 

This diversity of the values justifies and validates the conclusions that we achieved 

according to the presented theoretical survey in [13]. Indeed, for the algorithm Similarity 

Flooding the first two pairs of metamodels Ecore2Minjava and Ecore2UML2.0, the 

values of precision, recall and F-Measure are weak for each of the three chosen 

configurations. This is due to the fact that Ecore, Minjava and UML are of large size. On 

the contrary for the third couple, we note that the results are distinctly better for each of 

the three configurations. This is justified by their reduced sizes with respect to the two 

other pairs of metamodels.   

We also note that the values of the quality measures vary from a pair of metamodels 

to another. Indeed, the best values of precision, Recall and F-Measure are given by the 

pair of metamodel Ecore2Minjava which is of a large size. These results contradict the 

assessment given in [21].   

The third couple of metamodel ER_ODM2WebML has given good measures of 

quality for the first algorithm thanks to its small size. These measures are very close to 

those sent back by the couple Ecore2Minjava with SAMT4MDE+. This proves that this 

last keeps its performance for the metamodels on a large scale.   

 

 

Fig. 3 represents the assessment of the Similarity Flooding algorithm. The assessment 

of the algorithm SAMT4MDE+ is presented by Fig. 4.   

 



 

 

 

Fig. 3.The quality measures produced byEcore2Minjava (left), Ecore2UML2.0 (center) and 

ER_ODM2WebML (right) according to the algorithm Similarity Flooding. 

 

Fig.4. The quality measures produced by Ecore2Minjava (left), Ecore2UML2.0 (center) and 

ER_ODM2WebML (right) according to the algorithm SAMT4MDE+. 

According to this experimental survey concerning the two algorithms for metamodel 

matching, Similarity Flooding and SAMT4MDE+,  the main drawn findings are the 

following:   
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 In order to get the quality measures, the mapping model in SAMT4MDE+ must 

be validated by an Expert user, whereas the multi-mappings in Similarity 

Flooding are validated automatically on the basis of the models of mappings 

validated by experts or manually aligned, 

 SAMT4MDE+ gives very good quality measures of matching no matter the size 

of the metamodel to correspond, but this cannot be confirmed only after having 

tested this algorithm on the basis of the mappings validated by experts, or by 

many different couples of metamodels aligned manually. 

We can conclude that SAMT4MDE+ is more effective than Similarity Flooding because 

of two main reasons:   

 SAMT4MDE+ is more suitable for the metamodels of large size, whereas SF is  

suitable only for metamodels of small size, 

 The user's intervention to validate the suggestions of mappings determined by 

the algorithm will have very positive consequences on the performance of the 

quality measures. This is due to the fact that the expert user tried to choose all 

the mappings that appears correct during the validation phase.   

6 Prototyping 

We illustrate this section with two figures (Fig.5 and Fig.6) which are screenshots of our 

Plug-in developed to evaluate the two approaches of metamodels matching. Every figure 

illustrates one of the two following steps of our approach: 

 

 The algorithm selection for the matching process (Fig. 5) 

 The validation and adaptation of the obtained mappings by an expert user (Fig. 6) 

Fig. 5 presents on the left hand side, the Ecore metamodel and in the right the UML 

metamodel. Fig. 5 presents both metamodels in the form of trees. The steps for using our 

plug-in tool for metamodel matching with SAMT4MDE+ are as follows:  

 Import source and target metamodels: the tool loads the UML and Ecore 

metamodels. 

 Select and run a metamodel matching algorithm: in our case SAMT4MDE+ is 

chosen to propose matched elements between the two metamodels. 

 Validate the pairs of matched elements: the user can validate or refuse the pairs 

of the matched elements (cf. Fig. 6). 

 Generate the quality measures: the tool display the main quality measures, 

Precision, Recall, F-Measure. 

 



 

 

 

 

 

Fig.5.Algorithm selection for the matching of source and target metamodels 

 

Fig.6.Validation step of the matched elements 



 

 

7 Related work and Conclusion 

A semi-automation of the transformation process in MDE/MDA leads to a real challenge 

allowing many advantages: it enhances significantly the development time of 

transformation and decreases the errors that may occur in a manual definition of 

transformations. Matching techniques between metamodels are the centerpieces for a 

semi-automatic transformation process in MDE/MDA. The contribution of this work is 

twofold: First, we presented the main techniques and artifacts involved in the semi-

automatic transformation process. Second, we reviewed five main approaches that have 

been proposed in the literature for metamodel matching, and, then we have studied from 

an experimental point of view the two most recent techniques of metamodels matching 

Similarity Flooding and SAMT4MDE+. This experimental comparison allowed us to get 

different values of matching quality measures using different couples of metamodels. 

We have noticed that the algorithm SAMT4MDE+ gave more effective results than 

those given by the algorithm Similarity Flooding. 

In the future work, we will concentrate on how to combine different approaches to 

enhance the matching process. In addition, we will consider studying the optimization of 

mapping models which seems to be another important issue in MDE. 
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