
A Framework for Developing Distributed
Component-Based Applications with Explicit

Concurrency Control?

Francisco Sánchez-Ledesma, Juan Pastor, Diego Alonso

Division of Systems and Electronic Engineering (DSIE)
Technical University of Cartagena, Campus Muralla del Mar, E-30202, Spain

francisco.sanchez@upct.es

Abstract. Reactive system design requires the integration of structural
and behavioural requirements with temporal ones (along with V&V
activities) to describe the application architecture. This paper describes
an implementation framework for component-based application that
provides designers with great control over application concurrency
(number of threads and their characteristics), the computational load
assigned to them, as well as the distribution of components in processes
and nodes. The paper presents an improved version of a framework
previously developed, putting it in the context of a global Model-Driven
Software Development approach for developing, analysing and generating
code for reactive applications. This work has been done and validated in
the context of the development of robotic applications.

1 INTRODUCTION AND MOTIVATION

There is a well established tradition of applying Component Based Software
Development (CBSD) [18] principles in the robotics community, which has
resulted in the appearance of several tool–kits and frameworks for developing
robotic applications [14]. The main drawback of such frameworks is that,
despite being Component–Based (CB) in their conception, designers must
develop, integrate and connect these components using Object Oriented (OO)
technology. The problem comes from the fact that CB designs require more (and
rather different) abstractions and tool support than OO technology can offer.
Moreover, most of these frameworks impose the overall internal behaviour of
their components. On the other hand, robotic systems are reactive systems with
Real–Time (RT) requirements by their very nature, and most of the frameworks
for robotics do not provide mechanisms for managing such requirements. From
our point of view, the design and implementation of CB frameworks for
robotic applications development should overcome, among others, the following
problems:
? This work has been partially supported by the Spanish CICYT Project EXPLORE
(ref. TIN2009-08572).

mailto:francisco.sanchez@upct.es


2

1. The definition or adoption of a component language for modelling domain
applications. This language should allow designers to work with CBSD
abstractions rather than with OO ones. It should also take into account
the systems requirements, including their timing properties.

2. The translation of the resulting models to executable code and to analysis
models, which can later be injected to tools in order to analyse both the CB
application and the resulting code properties.

In CBSD, a software component is a unit of composition with well-
defined interfaces and explicit context of use. According to the classification of
CBSD approaches [10], in this work we consider components as architectural
units that communicate only through their ports, in line with the Software
Architecture discipline and ADLs (Architecture Description Languages). This
decision introduces, however, new problems:

– There are no development tools widely available that can generate efficient
code from the architectural model of the application. As far as we know, most
of them are academic initiatives, not widely used in industry (for instance,
Lagoona [6] or the set of languages derived from Oberon [18]).

– It is difficult to express the RT requirements of architectural components,
in part because the concepts used in CBSD (mainly “component” and
“port”) are not the same as those usually used to model and analyse
system schedulability (“threads”, “synchronization” and “communication
mechanisms” between threads). Some approaches solve this problem by
identifying threads or processes with components. However, in our opinion,
these solutions overly restrict the flexibility of the CBSD approach, since
components should be designed according to their schedulability instead of
according to the services offered by their interfaces. Therefore, it is required
a more flexible approach.

In order to overcome these problems, we decided to use the Model Driven
Software Development (MDSD) [17] approach, since it allows addressing them
as a whole, and constitutes the theoretical and technological framework where
the work presented in this paper is being developed. The MDSD approach has
been used to integrate the CBSD approach with RT issues, as well as with
the generation of both executable code and analysis models. The paper does not
focus on MDSD aspects, but on the use of architectural components for modelling
robotic applications, and particularly in a translation of the CBSD concepts to
OO concepts to enable both the compliance with the RT requirements of the
applications and the components distribution. A brief description of the overall
approach is, however, necessary to understand the rest of the paper.

Our global development approach starts by modelling the architecture of
the application using the CBSD approach, and then use a series of model
transformations to generate both analysis models and executable code. Though
any modelling language can be used for performing the first step, we developed
our own modelling language, entitled V3CMM. Amore detailed description of the



3

main characteristics of this language and an explanation of the reasons that led us
to its development is not in the scope of this paper, but they can be found in [9].
The V3CMM language provides three complementary but loosely coupled views
(see Fig. 1) that allows designers to define and connect software components,
namely: (1) an architectural view to define components (interfaces, ports, services
offered and required, composite components, etc.), (2) a coordination view
to specify component behaviour, based on timed automata theory [2], and
finally (3) an algorithmic view to express the sequence of actions executed by
a component according to its current state, based on activity diagrams. The
algorithmic view considers two kind of activities: periodic and non-periodic ones,
with the additional restriction over periodic activities that infinite loops are
forbidden, since V3CMM considers that activities model a single iteration of an
algorithm.

In order to ease the generation of executable code from the input
V3CMM model, an OO framework was designed and implemented. Such
framework provides an OO interpretation of the CBSD concepts that allows
translating the CB designs into OO applications. Specifically, it provides the base
classes for implementing components, and an infrastructure for the user to choose
the concurrency features that he ultimately want for the application: number of
threads, code allocated to such threads, deadlines, priorities, thread periods, etc.
A previous implementation of the framework without hierarchical state-machines
nor distribution support was described in [13]. This paper presents an improved
version of the cited work fulfilling such limitations.

The remainder of this paper is organized as follows. Section 2 explains
the main architectural drivers that guide the design of the implementation
framework. Afterwards, Section 3 describe the way in which CBSD modelling
elements (components, ports and timed automatas) have been translated into
OO concepts to generate executable programs. Section 4 explains the importance
of including support for component distribution in the framework, a justification
of the approach followed to do so, as well as a brief explanation of the
implementation. Finally, Section 5 presents the conclusions and future work.

������������ C���
��	����
���

C���

�������	�
������������


���������

����

Fig. 1. Schematic representation of the V3CMM views showing the kind of concepts
appearing in each view and the loosely coupled relationships existing among them.



4

Though the paper considers the domain of service robots, we think the
approach can be used in other domains with similar characteristics, since both
the modelling language (V3CMM) and the implementation framework consider
what we could call “generic” or “domain-independent” concepts.

2 ARCHITECTURAL DRIVERS

In a previous work described in [1], we transformed the input V3CMM model
(which describes the CB application architecture) into a UML implementation
model, from which code was generated afterwards. Though this process worked,
we soon realised that it had a number of drawbacks, namely (i) the developed
transformations were huge, and thus difficult to maintain and evolve, and (ii) too
many design decisions were embedded in the transformations, such as the
interpretation of the CBSD concepts, the facilities for creating and managing
components, communication mechanisms, concurrency characteristics, run-time
support, etc. Therefore, we had to modify the model transformations when an
application with other characteristics was needed.

Now we follow a different approach. In order to ease the generation of
executable code from the input V3CMM model, we decided to develop an
OO framework as the target for a model transformation. This framework will
provide the required properties for the final application. And it can be changed,
substituted or improved easier than a model transformation. As this paper
focuses on the design of such a frameworks, it is worth enumerating (in relevance
order) the main architectural drivers that guide its design:

AD1 Control over concurrency policy: thread number, thread spawning (static
vs. dynamic policies), scheduling policy (fixed priority schedulers vs. dynamic
priority scheduler), etc. Unlike most frameworks, these tasking issues are very
important for us, and thus we want the users of the framework to be able to
select them.

AD2 Control over the allocation of activities to threads, that is, control over
the computational load assigned to each thread, since V3CMM considers
the activity associated to a state as the minimum computational unit. The
framework allows allocating all the activities to a single thread, allocating
every activity to its own thread, or a combination of both policies. In any
case, the framework design should ensure that only the activities belonging
to active states are executed.

AD3 Facilitate the instantiation of the framework from the input CBSD model.
AD4 Control over the communication mechanisms between components

(synchronous or asynchronous).
AD5 Control over the component distribution and deployment.

3 FRAMEWORK DESIGN

The design and documentation of the framework was carried out using design
patterns, which is a common practice in Software Engineering [5]. In order



5

to describe the framework we will use figures 2, 3, and 4. Fig. 2 shows the
pattern sequence that has been followed in order to meet the architectural drivers
described in Section 2, while figures 3 and 4 show the classes that fulfil the roles
defined by the selected patterns. At this point, it is worth highlighting that
the same patterns applied in a different order would lead to a very different
structural design.

Among the aforementioned drivers, the main one is the ability to define
any number of threads and control their computational load (architectural
drivers AD1 and AD2). This computational load is mainly determined by the
activities associated to the states of the timed automata. In order to achieve
this goal, the Command Processor architectural pattern [4] and its highly
coupled Command pattern [7] have been selected, and they were the firsts to be
applied in the framework design, as shown in Fig. 2. The Command Processor
pattern separates service requests from their execution by defining a thread (the
command processor) where the requests are managed as independent objects
(the commands). These patterns provide the required level of flexibility, since
they impose no constraints over command subscription to threads, number of
commands, concurrency scheme, etc. The roles defined by these two patterns are
realised by the classes Activity_Processor and State_Activity, respectively (see
Fig. 3).

Another key aspect, related to AD4, is to provide an OO implementation
of the timed automata compatible with the selected patterns for concurrency
control, in order to integrate it in the scheme defined by the aforementioned
Command Processor pattern. It is also an aspect that has a great influence on
the whole design, since timed automatas model the behaviour of the components.
We decided that both regions and states should be treated homogeneously, and
thus we selected a simplified versions of the Composite pattern. The timed
automata is managed following the Methods for States pattern [4], and the
instances of the classes representing it are stored in a hash table. The roles
defined by this pattern are realised by the classes State, Hierarchical_State,
Region and Leaf_State.

Each activity associated to a state of the timed automata is implemented
as an object, following again the Command pattern, represented by the class
State_Activity. In this way, activities can be allocated to any command
processor. This constitutes the link between concurrency control and timed
automata implementation, since activities play roles in both patterns. The
distinction between states and regions led us to define two hierarchies of
State_Activity, which were implemented following the Strategy pattern: those
associated to leaf states (represented by the root class Leaf_Activity), and those
activities associated to regions (represented by the class Hierarchical_Activity).
The latter is aimed at managing the region states and transitions, and thus is
provided as part of the framework. The formers, shown in Fig. 4, are related to
(i) the activities defined in the V3CMM models, represented by Native_Activity
subclasses, and (ii) activities to manage the flow of data and control among
component through their ports.



6

Fig. 2. Dependency relationships between the patterns considered in the framework
development and the V3CMM views. Though the patterns are numbered, the design
was iterative, and most of the patterns had to be revisited, leading to many design
modifications.

Conditions, transitions and events are modelled as separate classes, shown in
Fig. 4, to facilitate the framework instantiation from the input V3CMM model
(AD4). Condition is an abstract class used to model transitions’ conditions.
It provides an abstract method to evaluate the condition. Concrete subclasses
are (i) ConditionStateActive, which tests whether a specific state is active;
(ii) ConditionActivityDone, which tests whether an activity is finished; and
(iii) ConditionPort, which tests if a message has been received by a specific port.
On the other hand, the class Transition include the source and target states,
and groups a set of conditions vectors that must be evaluated to determine if
the transition should be executed. To end with timed automata implementation,
it is worth mentioning two additional patterns. The Null Object pattern is
used for smoothly integrating states that have no associated activity, while the
Template Method pattern is related to defining the activity in charge of region
management.

The next challenge is how to store and manage the component internal data,
including all the states and activities mentioned above, the data received or that
must be sent to other components, the transitions among states, event queues,
etc. All these data is organised following the Blackboard pattern. The idea
behind the blackboard pattern is that a collection of different threads can work
cooperatively on a common data structure. In this case, the threads are the
command processors mentioned above. The main liabilities of the Blackboard
pattern (i.e. difficulties for controlling and testing, as well as synchronization
issues in concurrent threads) are mitigated by the fact that each component has
its own blackboard, which maintains a relatively small amount of data. Besides,
the data is organized in small hash tables with different access policies (monitors,
1-writer/n-readers, etc.). The roles defined by this pattern are realised by the
classes V3Data and V3ComponentData.

As shown in Fig. 2, the Blackboard pattern serves as a joint point
between timed automata and the input/output messages sent by components



7

Fig. 3. Simplified class diagram of the developed framework showing some of the
patterns involved in its design.

through their ports. Component ports and messages exchanged between them
are modelled as separate classes. The classes representing these entities are the
classes V3Port and V3Port_Msg, shown in Fig. 3. The communication mechanism
implemented by default in the framework is the asynchronous without reply
scheme, based on the exchange of messages following the Message pattern.
In order to prevent the exchange of many small messages, we use the Data
Transfer Object pattern to encapsulated in a single message all state
information associated to a port interface, which is later serialized and sent
through the port. Finally, because components encapsulate their inner state, we
use the Copied Value pattern to send copies of the relevant state information
in each message.

The framework adds extra regions to manage the flow of messages through
ports, the internal memory of the component, and each region of the component’s
timed automata. The activities for performing such a duty are predefined in the
framework, and they shall be assigned to threads in a similar way as the user
does with the activities of the input V3CMM model. It is worth highlighting that
this design facilitates schedulability analysis, since no code is “hidden” in the
framework implementation, but it must be explicitly allocated to a particular
thread.

While the temporal characteristics of the input model activities are specified
in the model itself, the characteristics of those added by the framework cannot
be set arbitrarily, but must be derived from the model, although currently



8

V3PortMsg

LeafActivity

NativeActivity

PortUpdater

NullActivity

ConditionMSG

SetProcessIdMsg

CreateComponentMsg

ConnectPortsMsg

DisconnectPortsMsg

ConnectToProcessMsg

CreateRemotePort

ConnectToProcessAct

DisconnectPortAct

SetProcessIdAct

V3PortUpdater

CreateRemotePortAct

CreateComponentAct

SendAndReceiveAct
DistributionManager

ConditionStateActive

ConditionEvent

ConditionPort

ConditionActivityDone

ProcessManager

DistributionMsgTable

Strategy Pattern

Null Object Pattern

Fig. 4. Hierarchy of classes that complement Fig. 3. Classes filled in grey represent the
joint points with the classes shown in that figure.

this is done manually. For example, the period of the activity that manages a
region must be less than the period of the most frequent activity defined inside
the region. Fig. 5 shows a scenario that illustrates these features. The original
V3CMM timed automata are extended with regions for managing the component
state and the messages flow through ports. Notice that, in the figure, regions have
marks indicating the period of the activity managing it. For instance, region
RgMotion is managed every 10 ms. Please also notice that new regions have
been added to the original model in order to manage communications among
ports. The framework allows designers to select the number of threads (three in
this case) and the way activities are allocated to them (in this case, all the region
activities are allocated to the same thread, according to their periods). In any
case, the framework user can select any other combination of threads–activities
once the framework has been instantiated from the input V3CMM model. The
framework does not provide any guidance on the number of threads to be
created, or how to make the assignment of activities to threads, but provides
the mechanisms needed for users can make such assignment according to some
heuristics as those defined in [8].

After a couple of refactoring steps, we soon realised that the code
implementing these architectural drivers could be organized into three groups
with clearly defined interfaces: (C1) the code that provides the runtime support
(modelling threads), (C2) the code that provides an OO interpretation of
the CBSD concepts and the framework ’hot-spots’, and (C3) the application-
specific code that supplement the ’hot-spots’ of the framework to create a



9

Fig. 5. An example of the use of the framework. Definition of thread number and
allocation of activities to them.



10

specific application. In this way, it would be possible to provide an alternative
interpretation of CBSD concepts (C2) using the same run–time support (C1), as
well as to reuse the same application (C3) in a different run–time (C1), provided
that C2 is not changed.

Distribution issues were the last to be considered. They are described
in the following section due its importance and extension. Nevertheless, it
is worth highlighting that its implementation did not require modifying the
framework structure, but defining several new classes and instantiating some of
the previously describe base classes.

4 OVERVIEW OF COMPONENT DISTRIBUTION

Being able to distribute components among nodes should be one of the main
characteristics of the framework, and thus one of our priorities, due to the
following reasons:

– By the very nature of robotic applications, which normally include several
computing nodes.

– Isolation of components with hard RT requirements from those with soft RT
requirements. In our case, this characteristic can be achieved by separating
both types of components and assigning them to different nodes.

– The case studies considered in our research lines explicitly consider
component distribution.

– The ability to modify the components deployment depending on the available
computing resources and the state of the environment.

In fact, each and every available robotic framework include distribution in
one way or another, being the use of a middleware technology, like CORBA,
the most common solution used all of them. A survey of the most well-known
robotics frameworks can be found in [14]. In our work, however, we decided to
develop an ad-hoc middleware for carrying out component distribution for the
following reasons:

– The users of commercial middleware technologies normally lose the control
over the execution of the application (the “inversion of control” problem),
as well as some RT characteristics (like number of threads, computing time,
etc.) that must be taken into account if RT analysis is required, as in our
case.

– Commercial middleware normally target OO applications, while our
approach uses components for modelling the application architecture. Thus,
it would be awkward to combine components with objects when designing
the application architecture.

– Though it would be possible to achieve a certain degree of control over
the middleware characteristics mentioned in item (i), the changes needed
for introducing these modifications would require a deep knowledge of the
middleware implementation (and its source code).



11

– The overall design approach to CBSD applications we follow, as described in
previous sections, do not need all the distribution services normally required
by distributed applications and provided by middleware technologies. In our
case, the components that make the application architecture up and the
connections among them are defined in the input models, and therefore
services like naming, registering, searching, etc. are not needed.

Under all these conditions, we considered that the best choice was to
develop an ad-hoc middleware with the minimum services needed for managing
component distribution. As such, we considered only services for component
allocation and de-allocation inside processes, component and application start
and stop services, and connection and disconnection of compatible ports of
components allocated in the same or in different processes. These processes can
be executed in different nodes, and thus the framework considers two levels
of component distribution: (i) components are allocated to a process, which
means that all the activities belonging to the component must be assigned to
threads belonging to such process, and (ii) processes are assigned to different
computational nodes.

According to what has been stated, in order to make the distribution possible
and feasible, two artefacts have been defined: one belonging to the CBSD domain
(the LocalProxyManager component), and the other one is a class added to the
framework (the ApplicationDeployer class). These elements are in charge of
realizing the deployment of the application components, and of managing the
messages sent among the nodes. At this point, it is worth highlighting that
the implementation of both elements did not require modifying the original
framework structure, but they only instantiate the base classes provided by the
framework. The objectives of the LocalProxyManager component are (i) to create
and connect component instances in node it manages, and (ii) to act as a proxy
of the ports of remote components. This component is not meant to be directly
added by the application developer, but, for each deployment process, one of
such components is automatically added to the application architecture, and
then created by the framework distribution services. These services are mainly
provided by the ApplicationDeployer class, which acts as the master node for
application deployment, and thus it must be executed in its own process before
the application can be deployed. This class performs the application deployment
according to the specification of a configuration file.

Internally, the LocalProxyManager contains the same constructive elements
(regions, states, transitions and activities) as any other component that has
to be instantiated in the framework. And like the rest of the components, it
allows their internal activities to be assigned to different threads in any arbitrary
fashion. It was decided to maintain the same structure because this ensures that
the overhead added by this component is completely measurable and afterwards
analysable. Although from the point of view of the framework user is irrelevant
how the LocalProxyManager component works internally, it is worth mentioning
that the current implementation is based on the use of the Reactor pattern [16].



12

The ApplicationDeployer can be considered as a mini Broker [16], without
explicit register nor look-up services. These services are not explicitly invoked
because all the information required to deploy and connect the application
components is read from the application configuration file, which is used by the
ApplicationDeployer to communicates LocalProxyManagers which components
should be created, and how to connect their ports. If any of these ports
belong to a component that runs in a separate process, the ApplicationDeployer
sends to the LocalProxyManager a Proxy [7] of such port, so that the
LocalProxyManager can make a local connection. The creation of the concrete
application components, which also involves the creation of its ports, states,
transitions, etc., is carried out by the classes LocalProxyManagerCreator and
ApplicationComponentCreator, which play the roles defined in the Abstract
Factory and Builder patterns.

The communication protocol currently used is TCP, though we plan to use
deterministic protocols like CAN bus. The decoupling of ApplicationDeployer
and LocalProxyManager from the communication infrastructure is achieved by
means of the Bridge pattern [7]. Both artefacts use the communication services
defined in the abstract class DistributionManager (see Fig. 3). Currently, there
is only one concrete subclass of this class, SocketManager, which relies on the
sockets libraries. But this design allows us to easily extend the framework with
new classes for changing the underlying communication protocol.

In the current implementation, based on TCP sockets, the ApplicationDeployer
is also in charge of sending to each LocalProxyManager the port and IP address of
the rest of the nodes the application is going to be deployed into, in order for them
to establish and manage communication among them. Ports are taken starting
from number 50.000 to avoid possible collisions with other protocols. Messages
exchanged among components (both intra and inter nodes) as well as those
related to components deployment are marshalled as ASCII string characters,
where each character has the size of a byte. These messages use labels to separate
and identify their fields, and to separate consecutive messages.

Many of the subclasses shown in Fig. 4 are related to component distribution.
Specifically, those derived from the class MSG define the kind of messages
exchanged by the ApplicationDeployer and the LocalProxyManagers, while the
ones deriving from LeafActivity define how the services requested by such
messages are carried out.

Newly, the activities added by the framework to achieve distribution are
treated as “normal” activities, and thus have to be allocated to threads just
like the rest of the component activities. The artefacts in charge of managing
component distribution and deployment are considered “normal” components,
in the sense that they use the same elements and behave exactly like any
other component in the application. This allows us to regularly include the
communication overhead in the RT analysis, provided that transmission times
are known and can be incorporated to the execution time associated to the
activities that manage communications.



13

In order to illustrate the whole process, the feasibility of the approach,
and its main advantages, we will use a simple example consisting in three
components deployed in two nodes. The selected example revolves around an
application for tele-operating a mobile robot. The architecture of the application
is shown in the left side of Fig. 6: a Human-Machine Interface (HMI) component
sends the movement and control commands issued by the user to the robot, a
Display component shows the information obtained from the robot sensors and
the commands sent by the user, and finally a controller component, entitled
LazaroRC, acts as a hardware abstraction layer that facilitates the sending
and receiving of messages to the robot. The figure only shows the structural
view of the application, since the timed automatas that describe component
behaviour are not relevant in this example. The right side of the figure shows
the same application distributed in two process, which requires the addition of
two LocalProxyManager.

The next code listing shows an excerpt of the configuration file that describes
the deployment of the case study application. It is possible to identify networking
characteristics (IP address and port for every node) and the connection between
component ports, among others:

<Deployment>
<Master Ip="localhost" SocketPort="50001"/>
<Process Id="1" Ip="localhost" SocketPort="50002"/>
<Process Id="2" Ip="localhost" SocketPort="50003"/>
<ComponentInstance Id="1" Type="1" ProcessId="1"/>
<ComponentInstance Id="2" Type="1" ProcessId="2"/>
<PortConnection>

<PortInstanceProcessId="1" ComponentInstanceId="1"
PortId="2" PortType="InPort"/>

<PortInstanceProcessId="2" ComponentInstanceId="2"
PortId="3" PortType="OuPort"/>

</PortConnection>

<RegionThreadRegionId="1" ProcessId="2"
ComponentInstanceId="2" ThreadId="1"/>

...
</Deployment>

At the time of making application deployment, every LocalProxyManager
create ports that replicates local ports of the components hosted on others
processes. The Display component, that according to the architecture of the
application shown in Fig. 6 should be connected with component LazaroRC, is
really connected to a mirror port that was created in a LocalProxyManager. In
this way, communication is carried out as if both components were contained
within the same process. Therefore, the communication mechanisms become
transparent for the application components.



14

Fig. 6. Architecture of the robot case study, where components are assigned to one
process (left side) or distributed in two processes (right side).

5 CONCLUSIONS AND FUTURE WORK

This paper has described an approach to provide a run–time support
(framework) to a CB approach for modelling applications with RT requirements.
To do so, it has been necessary to provide an OO interpretation of the high–level
architectural concepts (components, ports, timed automatas, etc.) providing
enough flexibility to also control application concurrency characteristics in order
to take into account RT requirements. The proposed solution is not closed to
future improvements, but it is a stable starting point for further development.
The approach has been validated with small–scale applications, targeted to
“academic” platforms (the in–house developed vehicle Lazaro, the Pioner P3AT
commercial robot, and a simple electrical vehicle). Therefore it still needs to be
tested in larger applications.

The adoption of a pattern-driven approach has greatly facilitated the design
of such framework. In addition, the selected patterns have been described like a
pattern story. A further step would be the definition of a pattern sequence, which
comprises and abstracts the aforementioned pattern story, so that developers can
use it in other applications as long as they share similar requirements. As said
in [4], with several pattern stories and pattern sequences it would be possible
to define a true pattern language for a given domain, which gives a concrete
and thoughtful guidance for developing or refactoring a specific type of system.



15

Although this article describes only a story of patterns, in the sense described
in [4], we hope that it is sufficiently valuable to contribute to the definition
of a true pattern language for the development of CB applications with RT
requirements. The greatest difficulties in reporting this story have been how to
synthesize in a few pages the motivations for choosing the patterns that have
been used, and the lack of consensus about the best way of documenting pattern
stories. It is also very difficult to synthesize the problems encountered along the
way, and therefore it is impossible to describe the problems that have arisen
during the development of the framework and how they have been resolved.
As mentioned in the paper the design has been was iterative, and most of the
patterns had to be revisited, leading to many design modifications.

This paper also has described the evolution of the ongoing work,
incorporating the ability to distribute components to an OO framework that
support CB development. Distribution capacity was added in a regular way
to the framework, which allows to analyse the impact on the temporal
characteristics of the application that has a certain distribution of its
components. For the type of applications that have been done, the distribution
implementation has proven to be more than enough, although we must see how
it scales as the number of components increases. Having added distribution
capacities to the framework, the most urgent future work is to validate the
framework, using it in larger applications that comprise both safety critical
requirements in their reactive behaviour and intensive processing. In this way,
it is crucial to integrate the algorithms libraries offered by other robotic
frameworks. This integration is problematic, as is explained in [11], but it is
crucial to make the approach (not only the framework) attractive enough to the
robotics community.

The work described in this article is a work in progress. Currently, work
is continuing to extend the framework with additional features following a
pattern driven approach. Among these extensions, it should be noted (1) the
addition of heuristics to determine the number of threads and to carry out the
assignment of the component activities to these threads, (2) the development
of more sophisticated model transformations to instantiate the framework from
a V3CMM input model, (3) the refinement and improvement of standards used
for implementing hierarchical state machines and timed automata [15], (4) the
adaptation of the implementation to be compliant with the Ravenscar profile [3]
for designing hard RT applications, (5) the addition of deterministic network
protocols, (6) the integration of algorithms defined in other frameworks, which
are available as open source code. And last but not least, we are working on
generating input models for analysis tools compliant with the UML MARTE
profile [12] from instances of the framework.

References
1. Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J., Álvarez, B.: V 3CMM :

a 3-View Component Meta-Model for Model-Driven Robotic Software De-
velopment. Journal of Software Engineering for Robotics (JOSER) 1(1),



16

3–17 (Jan 2010), http://joser.unibg.it/index.php?journal=joser&page=
article&op=viewFile&path[]=18&path[]=3

2. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press (May 2008)
3. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the ada ravenscar

profile in high integrity systems. Tech. Rep. YCS-2003-348, University of York
(2003)

4. Buschmann, F., Henney, K., C. Schmidt, D.: Pattern-Oriented Software
Architecture, Volume 4: A Pattern Language for Distributed Computing. John
Wiley and Sons Ltd (2007)

5. Buschmann, F., Henney, K., Schmidt, D.: Pattern-Oriented Software Architecture,
Volume 5: On Patterns and Pattern Languages. John Wiley and Sons Ltd. (2007)

6. Fröhlich, P., Gal, A., Franz, M.: Supporting software composition at the
programming language level. Science of Computer Programming 56(1-2), 41–57
(Apr 2004)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. A-W Prof. (Jan 1995)

8. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with
UML. Object Technology, Addison-Wesley (2000), iSBN: 0-201-65793-7

9. Iborra, A., Alonso, D., Ortiz, F., Franco, J., Sánchez, P., Álvarez, B.: Design of
service robots. IEEE Robot. Automat. Mag., Special Issue on Software Engineering
for Robotics 16(1), IEEE (Mar 2009)

10. Lau, K., Wang, Z.: Software component models. IEEE Trans. Software Eng. 33(10),
IEEE (Oct 2007)

11. Makarenko, A., Brooks, A., Kaupp, T.: On the benefits of making robotic software
frameworks thin. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS’07). IEEE (2007)

12. OMG: Uml profile for marte: Modeling and analysis of real-time embedded systems,
formal/2009-11-02 (2009), http://www.omg.org/spec/MARTE/1.0

13. Pastor, J., Alonso, D., Sánchez, P., Álvarez, B.: Towards the definition of a pattern
sequence for real-time applications using a model-driven engineering approach.
In: Proc. of the 15th Ada-Europe International Conference on Reliable Software
Technologies, Ada Europe 2010. pp. 167–180. LNCS, Springer-Verlag (Jun 2010)

14. Robot Standards and Reference Architectures (RoSTa), Coordination Ac-
tion funded under EU’s FP6: http://wiki.robot-standards.org/index.php/
Current_Middleware_Approaches_and_Paradigms

15. Samek, M.: Practical UML Statecharts in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems. Newnes (2008)

16. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-oriented software
architecture, volume 2: patterns for concurrent and networked objects. Wiley
(2000)

17. Schmidt, D.: Model-driven engineering. IEEE Computer 39(2), IEEE (Feb 2006)
18. Szyperski, C.: Component software: beyond object-oriented programming. A-W, 2

edn. (2002)

http://joser.unibg.it/index.php?journal=joser&page=article&op=viewFile&path[]=18&path[]=3
http://joser.unibg.it/index.php?journal=joser&page=article&op=viewFile&path[]=18&path[]=3
http://www.omg.org/spec/MARTE/1.0
http://wiki.robot-standards.org/index.php/Current_Middleware_Approaches_and_Paradigms
http://wiki.robot-standards.org/index.php/Current_Middleware_Approaches_and_Paradigms

	A Framework for Developing Distributed Component-Based Applications with Explicit Concurrency Control
	Introduction and Motivation
	Architectural Drivers
	Framework Design
	Overview of Component Distribution
	Conclusions and Future Work


