

Challenge, Issues and Comparison of Metamodels

Matching

Lamine Lafi
1
, Slimane Hammoudi

2

1 ISSAT, Institut Supérieur des Sciences Appliquées et de Technologie de Sousse,Tunisia,

Amine.Lafi@issatso.rnu.tn

2 ESEO, Ecole supérieure de l’Ouest Angers, France, slimane.hammoudi@eseo.fr

Abstract. As models grow in use for developing systems, transformation between

models grow in importance. University and industry are seeking for effective and

efficient ways to treat transformation as first-class assets in Model Driven

Engineering (MDE). In order to produce new and more powerful transformations,

we argue that the semi-automatic generation of transformation rules is an

important challenge in future MDE development to make it easier, faster, and cost-

reduced process. In this paper we propose to discuss metamodels matching as a

key technique for a semi-automatic transformation process. We review and discuss

the main approaches that have been proposed in the state of the art for metamodels

matching. We compare two recent algorithms of metamodel matching namely

“Similarity Flooding” and SAMT4MDE+ using match quality measures proposed

for schema matching in databases. A Plug-in under the Eclipse framework has

been developed to support our comparison using three couple of metamodels.

Keywords: Metamodel matching, Model transformation, semi-automatic

transformation process

1 Introduction

Research and practice for Model Driven Engineering (MDE) have significantly

progressed over the last decade for dealing with the increase of complexity within

systems during their development and maintenance processes by raising the level of

abstraction using models as a core development artifact. New significant approaches,

mainly Model Driven Architecture (MDA) [1] defined at the OMG (Object Management

Group), “Software Factories” proposed by Microsoft [2] and the Eclipse Modeling

Framework (EMF) [3] from IBM, are born and have been experimented. In the

literature, several issues around MDE have been studied and subjected to intensive

research, e.g. modeling languages [4] [5], model transformation [6] [7], mapping

between metamodels [8] [9], and design methodologies [10]. Among these issues, model

transformation languages occupy a central place and allow the definition of how a set of

elements from a source model are analyzed and transformed into a set of elements in a

target model. However, these transformations are created manually, often a tedious and

error-prone task, and therefore an expensive process. These transformations consist of

creating a set of rules involving, and at the same time merging, mapping and

transformation techniques between two metamodels. A semi-automation of the

transformation process leads to a real challenge allowing many advantages: It enhances

significantly the development time of transformation and decreases the errors that may

occur in a manual definition of transformations. In [9][11]the authors have initiated a

first attempt towards this semi-automation. They introduced an approach separating

mailto:Amine.Lafi@issatso.rnu.tn
mailto:slimane.hammoudi@eseo.fr

mapping specifications from transformation definitions, and implemented this approach

in a tool called Mapping Modeling Tool (MMT). In this first approach, a mapping

specification was created manually to define the relationships between metamodels (i.e.

equivalent metamodel elements), with the transformation definition being generated

automatically from the mappings.

In [12], the authors have proposed to push the semi-automation process one step

further by using matching techniques [13] to semi-automatically generate mappings

between two metamodels. The produced mappings could then be adapted and validated

by an expert for the automatic derivation of a transformation model, as a set of

transformation rules. Thus, matching techniques between metamodels are the

centerpieces for a semi-automatic transformation process in MDE and particularly in

MDA. In fact, metamodels matching allows discovering mappings between two

metamodels and the mappings allow in turn generating transformation rules between two

metamodels. However, there has been little research in metamodel matching in contrast

to the ontology [14] and database [15] domains, where an intensive research has been

conducted. In this paper, we firstly discuss the techniques and foundations of schema

matching that has been extensively studied in the database area, and then we review the

main different approaches that have been proposed for metamodel matching in the

context of MDA/MDE. We compare two recent algorithms of metamodel matching

namely “Similarity Flooding” and Extended SAMT4MDE (noted SAMT4MDE+) using

match quality measures proposed for schema matching in databases. A Plug-in under the

Eclipse framework has been developed to support our comparison using three couples of

metamodels.

We will start by stressing the role of matching techniques in the semi-automatic

process of model transformation.

This paper is organized as follows: section 2 introduces the main concepts and

techniques for a semi-automatic transformation process, presents schema matching

techniques and situates them in the context of metamodel matching. Section 3, reviews

and compares five approaches that have been proposed for metamodel matching in the

context of MDA. Section 4 presents the two recent algorithms for metamodel matching

and section 5 discusses an experimental comparison between these two algorithms using

three pairs of metamodels. Section 6 presents ourprototype implemented as a plug-in for

Eclipse. Finally, section 7 concludes our work and presents some final remarks and

perspectives.

2 Metamodels matching for model transformation

2.1 Metamodels matching for model transformation: Overview

It is well recognized today that model transformation is one of the most important

operations in MDA [16]. The following definition of model transformation, largely

consensual, is proposed in [17]:

“A Transformation is the automatic generation of a target model from a source

model, according to a transformation definition. A transformation definition is a set of

transformation rules that together describe how a model in the source language can be

transformed into a model in the target language. A transformation rule is a description

of how one or more constructs in the source language can be transformed into one or

more constructs in the target language”.

However, we point out two main problems concerning the MDA transformation

process.

 The first problem concerns the manual creation of “transformation rules” between

metamodels. Generally, this task is tedious and error-prone, and therefore expensive

in terms of efficiency [18]. Moreover, writing the transformation rules requires a

good mastery of both the transformation language and the source and target

metamodels, in order to express the correspondence both from a structural and a

semantic point of view.

 The second problem concerns the specification of these “transformation rules”, which

merge together techniques of mapping and transformation without an explicit

distinction between them. That is to say, the specification of correspondences

between elements of two metamodels and the transformation between them are

grouped in the same component at the same level.

In the MDA context, and according to previous works [9][19], the concepts of

mapping and transformation should be explicitly distinguished, and together could be

involved in the same process that we call transformation process. In fact, in the

transformation process, the mapping specification precedes the transformation

definition. A mapping specification is a definition of the correspondences between

metamodels (i.e. a metamodel for building a PIM (Platform Independent Model) and

another for building a PSM (Platform Specific Model)). This definition is largely

obtained by a matching process between two metamodels, and completed by an expert.

Transformation definitions contain an explicit description of how to transform a model

into another using a transformation language. Transformation definitions are a set of

rules that are obtained automatically from all the mappings between two metamodels.

Hence, in our approach the transformation process of a PIM into a PSM can be

structured in two stages: a mapping specification obtained by a matching process and

completed by an expert, and a transformation definition derived automatically from the

mappings.

The Fig. 1 illustrates the main concepts and techniques involved in a semi-automatic

transformation process. The matching operation is the process that produces the potential

mappings between two metamodels. Generally, this task implies a search of equivalent

or similar elements between two metamodels. Given that no generic matching solution

exists for different metamodels and application domains, it is recommended to give the

human expert the possibility to check the obtained mappings, and, if necessary, update

or adapt it. This is one of the steps in the whole process, in which the expert intervenes

to complete and validate the obtained results. Finally, a transformation model (a

program: a set of rules), is derived automatically from a mapping model. A

transformation model is basically represented by a set of rules that states how elements

from source metamodel are transformed into elements of target metamodel. A

transformation model (program) takes a source model defined by designers or and

produces an equivalent target model on a specific platform.

Fig.1. Semi-automatic transformation process.

Two important operations (dashed arrows) adaptation (1) and derivation (2) allow

linking and completing the two main operations (matching and transformation) in the

whole process of transformation. Adaptation is the responsibility of the expert user who

should accept, discard or modify the obtained mappings, furthermore, to specify the

correspondences which the matcher was unable to find. Loosely speaking, the mapping

and matching techniques (models) could be defined with the following intuitive formula:

Mapping = Matching + Adaptation

(1)

The mapping model obtained in the previous step after adaptation by the expert user

should be completely defined allowing an automatic generation of transformation model.

This operation is called derivation and, in the same way as above, transformation and

mapping models can be defined with the following intuitive formula:

Transformation = Mapping + Derivation (2)

2.2 From schema matching to metamodel matching

Matching between metamodels are the centerpieces for a semi-automatic transformation

process in MDE, particularly in MDA. Matching techniques have been studied in

various research domains, including digital libraries, ontologies, agent matchmaking,

schema integration and evolution in databases [14] [19]. In the context of MDE, we can

find few works in the literature that address the problem of metamodels matching.

Schemas in the context of databases and metamodels in our context of MDE are closely

related, hence, we propose to review the different approaches of schema matching, and

after that we situate these approaches in our context of metamodeling matching.

Source

Metamodel

Target

Metamodel

Matching Techniques

Mapping

Model

Transformation

Model (program)

Source

model

Target

model

(1)

(2)

2.2.1 Classification of schema matching approaches

In the literature, several schema matching approaches have been proposed [14] [19].

Each schema matching approach has its own characteristics that were grouped in a

taxonomy discussed below [18] [20]. In addition, each approach has been evaluated

through match quality measures discussed in the next section 2.2.2.

 Individual matcher approaches use only one matching criterion. They are classified

in:

 – Schema-only based, when they consider only metamodels. They can be classified

in:

 Element level, the mapping is realized for each individual element. It can be

classified in linguistic and constraint-based. Linguistic are based on name

similarity, description, global namespace, while constraint-based are based on

type similarity and key properties.

 Structure-level, the mapping is realized considering the combinations of elements

related in a structure. It is only classified in constraint-based that use graph

matching.

 – Instance/contents-based, when they consider only instances (or models). It can also

be classified in element-level. This last can be classified in linguistic and constraint-

based. In this case, linguistic is based on word frequencies and key terms present in

the element instances, while constraint-based is based on value pattern and ranges of

the element instances.

 Combining matchers use multiple matching criteria. They can be classified in:

 – Hybrid, they combine multiple approaches to create only one matcher in order to

produce a result, i.e. the creation of mapping between elements.

 – Composite, they combine many results obtained from different approaches in order

to produce the mapping between elements. This combination of results can be

manual or automatic.

2.2.2 Matching quality Measure

The interrelationships between metamodels can be organized in sets which can be

manually or automatically created. A set created manually can contain all needed

matches (i.e. matched elements); while a set created automatically can contain valid and

non-valid matches. The first set is denominated real matches, and the later derived

matches (cf. Fig.2).

Fig.2. Comparing real matches and automatically derived matches.

A B C

D

Real Matches
Derived Matches

In addition, other subsets are defined as follows [14] [20]:

- A (false negatives) are matches needed but not automatically identified.

- B (true positives) are matches which are needed and have also been correctly matched

by the automatic match operation.

- C (false positives) are matches falsely proposed by the automatic match operation.

- D (true negatives) are false matches which have also been correctly discarded by the

automatic match operation.

Based on the cardinalities of these sets, the following match quality measures are

provided as parameters for benchmarks:

Precision =
CB

B

(3)

reflects the share of real correspondences among all found ones.

Recall =
BA

B

(4)

specifies the share of real correspondences that are found.

F-Measure = 2 *
callecision

callecision

RePr

Re*Pr

(5)

Overall = Recall * (1 -
ecisionPr

1
)

(6)

All these measures were developed specifically in the schema matching context [18]

[21]. We can notice that F-Measure represents the harmonic mean of Precision and

Recall. The main underlying idea of Overall is to quantify the post-match effort needed

for adding missed matches and removing false ones.

2.2.3 Metamodel Matching versus schema matching

Our aim is not to compare schema matching approaches with those of metamodel

matching. The main reason is that the technological spaces of both approaches are not

the same. A technological space [22] is a working context with a set of associated

concepts, body of knowledge, tools, required skills, and possibilities. It is often

associated to a given user community with shared know-how, educational support,

common literature and even workshop and conference regular meetings. Although it is

difficult to give a precise definition, some TSs can be easily identified, e.g. the XML TS,

the DBMS TS, the abstract syntax TS, the meta-model (OMG/MDA) TS, etc. In one

case, in schema matching efforts have been made mainly in the context of databases and

involve ER schemas. In the other case, metamodel matching focuses on UML OMG

standard which is structurally and semantically richer than ER schemas. Moreover, the

level of abstraction of metamodels and schemas is not the same. However, techniques

known and used to find semantic correspondences between the elements of two schemas

are to be applied to the metamodel matching problems since the aim “finding semantic

correspondences” is still the same. We can say that metamodel matching techniques

would probably subsume schema matching techniques from the fact that a technological

space of metamodels includes the technological space of schemas in database area. Thus

metamodel matching techniques will probably become a generic solution to many

problems of matching; that we can call the X-matching.

3 A brief review of Metamodel Matching Techniques

Table 1 gives a summary of an evaluation of five approaches of metamodels matching.

These approaches are: Similarity Flooding (SF), ModelCVS project, Semi-Automatic

Matching Tool for MDE (SAMT4MDE), Generic Model Weaver (AMW) and an

extended SAMT4MDE (SAMT4MDE+). On the left hand side of table 1 we can see all

the features used for the evaluation.

A detailed discussion concerning this evaluation is presented in [13]. According to the

comparative study presented in Table 1 we have drawn the following conclusions:

 Only two approaches namely: Similarity Flooding and SAMT4MDE+ are exclusively

concerned with the problem of metamodels matching in the context of MDA (the

other three approaches are based on matching patterns in databases and ontology), and

they are the most recent algorithms,

 These two approaches give the most effective quality measures,

 They operate semi-automatically despite the fact the expert intervenes to validate the

matched elements.

 Similarity Flooding and SAMT4MDE+ use the MDA technological space (UML,

MOF) for metamodels of any size.

We have also deduced the following conclusions:

 The Similarity Flooding algorithm is more suitable usually with metamodels of small

size,

 We also note that the quality measures will be very weak if the correspondence is

between two metamodels of largely different size.

All these details, remarks and findings lead us to carry an experimental comparative

survey between the two approaches of Similarity Flooding and SAMT4MDE+ using the

same pairs of metamodels. In order to achieve this task, we rely on quality measures

presented in section 2.2.2.

Table 1. Summary of the evaluations.

 SF ModelCVS SAMT4MDE AMW SAMT4MDE+

References [21]&[23] [20] [19] [18] [24]

Test problems

Tested Schema types XML/SQL DDL
Relational/RDF/

UML/ Ecore

UML1.4/UML 2.0 Object-
oriented

model: UML,

Java, and C-
Sharp

SQL DDL
Relational/

UML

UML 2.0/ Ecore

Schema / Schema tasks 18/9 - 2/1 - -

Min /Max / Avg schema

size

5/22/12 Large schema Very large

schema

-

Min /Max / Avg schema

similarity

0.46/0.94/0.75 - Schema

similarity=0.79

- Schema

similarity=0.68

Match result representation

Matches Element-level correspondences
between similarity value in [0.1]

With discrete
value {0,1,-1}

 Similarity value in
[0.1]

Element Repr Node Models/Metamodels Node Models or

Metamodels
Data

Class

Local/Global Cardinality 1:1/m:n 1:1/m:n 1 :n - 1:1/m:n

Quality of measure And test methodology

Employed Quality
Measures

Overall Precision, Recall,
F-measure

Precision,
Recall,

Overall, F-

measure

Element
similarity*,

Link filtering,

Link rewriting.

Precision, Recall,
Overall, F-measure

Subjectivity 7 user/ 6

configurations

10 scenarios and 13

tools settings

02 Fragments

of

UML and C#

metamodels

A set of input

metamodels

1 class and its

neighbor classes

Pre-match effort None None None None None

Studies Impact on match

Quality

Filters, fix-point

formulas,
randomizing

initial similarity

F-Measure:

IF>0.5: positive
benefit

IF<0.5: negative

Benefit

 Threshold

Best average Match quality

Prec/ Recall **

0.63/0.58 0.79/0.68 - 0.84/0.90

F-measure 0.61 0.73 - 0.87

Overall ˜0.6 - 0.49 - 0.73

Evaluation high light

 User
subjectivity, no

pre-match effort

no pre-match effort Representative
metamodels

for developing

information

system

no pre-match
effort

no pre-match effort

Application Area Database and

ontologies

Database and

Structural Modeling

languages

Model

transformation

Model

transformation

Model

Transformation

Manual work of user Choice of

metamodels to

align, Evaluate
matching

suggestions

produced by
algorithm.

Including ontology

creation tools, query

tools, matching
tools, and

Reasoning tools.

 Evaluate matching

suggestions

produced by
algorithm

Match granularity Element level

Mapping

Schema-level

Matching

Schema-level

Matching

- -

* Contains element to element similarity and structural similarity

** Change from configuration to another

4 Similarity Flooding versus SAMT4MDE+

4.1 Similarity Flooding

Similarity Flooding in [21] is a generic alignment algorithm that allows calculating the

correspondences between the nodes of two labeled graphs. This algorithm is based on

the following intuition: if two nodes stemming from two graphs have been determined as

similar, therefore, there is strong probability for the neighboring nodes to be similar, too.

More precisely, SF applies five successive phases on the labeled graphs which have been

provided at the input phase. This algorithm is applied after the transformation phase that

consists in transforming the MMsource and the MMtarget to the directed labeled graphs

Gsource and Gtarget. Along this phase a set of six strategies to encode the metamodel

into such a graph has been used. Each of these strategies has got its proper techniques to

transform these two models into a graph and they are explained in [21].

In this paper we consider only three tree strategies of encoding namely: Standard,

Saturated and Flattened, despite the fact that they have given the best quality measures

[21].

4.1.1 The Standard Configuration

According to [21] the Standard configuration extends the Basic configuration to obtain

similarities not only inspecting the names of the elements, but also their types, and main

attributes (abstract for the EClass, lowerBound and upperBound from EAttribute and

EReference, and containment from EReference). In that purpose, a node representing an

element E is linked by an arc labeled kind to a node N representing the type of the

element E. N is labeled according to the type of the element E, removing the prefix "E"

for all the elements of Ecore, and adding the suffix "Element" (e.g. EClass is turned into

ClassElement). To deal with the main attributes, when an element E has for type a meta-

class with an attribute A, then the node corresponding to E is linked with an arc labeled

A to a node whose label is the value of the attribute A for E. For example, to represent

an abstract EClass myEClass, the node representing myEClass is linked with an arc

labeled abstract to a node labeled true. The left side of Fig. 5 in [21] shows an excerpt of

the graph exGsource generated using the Standard configuration.

4.1.2 The Flattened Configuration

In [21] the flattened configuration is based on the Standard one, but with flattened

inheritance. The nodes representing abstract EClasses and the arcs labelled supertype are

deleted. Instead, arcs labelled own (resp. ref) connect nodes representing an EClass Ecl

to nodes representing the EAttribute (resp. EReference) defined by Ecl and all its

superclasses. Moreover, when an EReference Eref is typed by an abstract EClass Ecl, a

type arc is created from the node corresponding to Eref to each non-abstract sub-class of

Ecl.

4.1.3 The Saturated Configuration

The Saturated configuration according to [21] is still based on the Standard one. Here,

the transitive relations are saturated, like in [25]. EClass nodes are now connected by a

supertype arc to the nodes representing all the super-classes of this EClass. EClass nodes

are also connected by own (resp. ref) arcs to the nodes representing the EAttribute (resp.

EReference) introduced and inherited by the EClass. Finally, for a node representing an

EReference, type arcs are created to the node representing the EClass that types the

EReference as well as all the nodes representing the super-classes of the EClass.

4.2 SAMT4MDE+

In [24] a new metamodel matching algorithm of that uses structural comparison between

a class and its neighbouring classes in order to select the equal or similar classes from

source and target metamodels. The proposed algorithm for metamodel matching called

SAMT4MDE+ is an extension and enhancement of the algorithm presented in [26] and

it is implemented in the Semi-Automatic Matching Tool for MDE (SAMT4MDE) which

is capable of semi-automatically creating mapping specifications and making matching

suggestions that can be evaluated by users. This provides more reliability to the system

because mapping becomes less error-prone. The algorithm proposed can identify

structural similarities between metamodel elements. However, sometimes elements are

matched by their structures but they do not share the same semantic. The lack of

semantic analysis leads the tool to find false positives matches, i.e. derived

correspondences that are not true.

The function similarity (c1,c2) is the weighted mean which has as parameters

basicSim (c1,c2) and structSim (c1,c2) with the weights coefBase and coefStruct,

respectively. It returns continuous values representing the similarity level between c1

and c2.

The weights are coefBase and coefStruct that added result in 100%, or 1(one).

For example, if coefBase is equal to 0.3, then coefStruct must be equal to 0.7. The

value of similarity (c1,c2) is compared to a threshold value in the range [0,1]. If a

similarity is greater than threshold value, the classes c1 and c2 are correspondent,

otherwise they don’t correspond. Thus, threshold is an important measure to take a

decision: if the value is low, in general in the range [0, 0.5], many elements will be

considered correspondent in a wrong way (false positive), if the value is high, in general

in the range [0.8, 1], many classes will not be considered as correspondent (false

negative).

According to [24] the similarity function between two classes c1 and c2 is given by:

similarity(c1,c2) = basicSim(c1,c2) * coefBase+structSim(c1,c2) * coefStruct (7)

where 0 <= coefBase<=1, 0<=coefStruct<=1, and coefBase + coefStruct = 1.

5 Comparative study and First Experiments

In order to achieve a comparative study between the two approaches for metamodels

matching (SF and SAMT4MDE+), we have used three pairs of metamodels among the

following list: Ecore, Minjava, UML, Webml, and er_ODM. These metamodels are

presented in details in [27].Three alignments have been considered for our comparison:

 Ecore 2 Minjava

 Ecore 2 UML

 Webml 2 er_ODM

To achieve an experimental survey, we developed a java plug-in in under eclipse.

This plug-in allows to help the user to choose the algorithm to execute. Every algorithm

will be evaluated for each of the couples of the three couples of metamodels:

Ecore2Minjava, Ecore2UML2.0, and ER-ODM2WebML.

The results of the experimentation of the two algorithms Similarity Flooding and

SAMT4MDE+ are given by Fig. 3 and Fig. 4. The assessment of the first algorithm is

done according to the three configurations: Standard, Flattened, and Saturated (since

they gave good results in [21]) on the three couples of metamodels Ecore2Minjava,

Ecore2UML2.0 and, ER-ODM2WebML. The second algorithm is evaluated on the same

pairs of metamodels.

According to Fig 3 and Fig 4 we note that the values of the quality measures vary

according to the size of the metamodels and configurations used in Similarity Flooding.

This diversity of the values justifies and validates the conclusions that we achieved

according to the presented theoretical survey in [13]. Indeed, for the algorithm Similarity

Flooding the first two pairs of metamodels Ecore2Minjava and Ecore2UML2.0, the

values of precision, recall and F-Measure are weak for each of the three chosen

configurations. This is due to the fact that Ecore, Minjava and UML are of large size. On

the contrary for the third couple, we note that the results are distinctly better for each of

the three configurations. This is justified by their reduced sizes with respect to the two

other pairs of metamodels.

We also note that the values of the quality measures vary from a pair of metamodels

to another. Indeed, the best values of precision, Recall and F-Measure are given by the

pair of metamodel Ecore2Minjava which is of a large size. These results contradict the

assessment given in [21].

The third couple of metamodel ER_ODM2WebML has given good measures of

quality for the first algorithm thanks to its small size. These measures are very close to

those sent back by the couple Ecore2Minjava with SAMT4MDE+. This proves that this

last keeps its performance for the metamodels on a large scale.

Fig. 3 represents the assessment of the Similarity Flooding algorithm. The assessment

of the algorithm SAMT4MDE+ is presented by Fig. 4.

Fig. 3.The quality measures produced byEcore2Minjava (left), Ecore2UML2.0 (center) and

ER_ODM2WebML (right) according to the algorithm Similarity Flooding.

Fig.4. The quality measures produced by Ecore2Minjava (left), Ecore2UML2.0 (center) and

ER_ODM2WebML (right) according to the algorithm SAMT4MDE+.

According to this experimental survey concerning the two algorithms for metamodel

matching, Similarity Flooding and SAMT4MDE+, the main drawn findings are the

following:

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

Precision Recall F-measure

Ecore2Minjva

Ecore2UML2.0

ER-ODM2WebML

 In order to get the quality measures, the mapping model in SAMT4MDE+ must

be validated by an Expert user, whereas the multi-mappings in Similarity

Flooding are validated automatically on the basis of the models of mappings

validated by experts or manually aligned,

 SAMT4MDE+ gives very good quality measures of matching no matter the size

of the metamodel to correspond, but this cannot be confirmed only after having

tested this algorithm on the basis of the mappings validated by experts, or by

many different couples of metamodels aligned manually.

We can conclude that SAMT4MDE+ is more effective than Similarity Flooding because

of two main reasons:

 SAMT4MDE+ is more suitable for the metamodels of large size, whereas SF is

suitable only for metamodels of small size,

 The user's intervention to validate the suggestions of mappings determined by

the algorithm will have very positive consequences on the performance of the

quality measures. This is due to the fact that the expert user tried to choose all

the mappings that appears correct during the validation phase.

6 Prototyping

We illustrate this section with two figures (Fig.5 and Fig.6) which are screenshots of our

Plug-in developed to evaluate the two approaches of metamodels matching. Every figure

illustrates one of the two following steps of our approach:

 The algorithm selection for the matching process (Fig. 5)

 The validation and adaptation of the obtained mappings by an expert user (Fig. 6)

Fig. 5 presents on the left hand side, the Ecore metamodel and in the right the UML

metamodel. Fig. 5 presents both metamodels in the form of trees. The steps for using our

plug-in tool for metamodel matching with SAMT4MDE+ are as follows:

 Import source and target metamodels: the tool loads the UML and Ecore

metamodels.

 Select and run a metamodel matching algorithm: in our case SAMT4MDE+ is

chosen to propose matched elements between the two metamodels.

 Validate the pairs of matched elements: the user can validate or refuse the pairs

of the matched elements (cf. Fig. 6).

 Generate the quality measures: the tool display the main quality measures,

Precision, Recall, F-Measure.

Fig.5.Algorithm selection for the matching of source and target metamodels

Fig.6.Validation step of the matched elements

7 Related work and Conclusion

A semi-automation of the transformation process in MDE/MDA leads to a real challenge

allowing many advantages: it enhances significantly the development time of

transformation and decreases the errors that may occur in a manual definition of

transformations. Matching techniques between metamodels are the centerpieces for a

semi-automatic transformation process in MDE/MDA. The contribution of this work is

twofold: First, we presented the main techniques and artifacts involved in the semi-

automatic transformation process. Second, we reviewed five main approaches that have

been proposed in the literature for metamodel matching, and, then we have studied from

an experimental point of view the two most recent techniques of metamodels matching

Similarity Flooding and SAMT4MDE+. This experimental comparison allowed us to get

different values of matching quality measures using different couples of metamodels.

We have noticed that the algorithm SAMT4MDE+ gave more effective results than

those given by the algorithm Similarity Flooding.

In the future work, we will concentrate on how to combine different approaches to

enhance the matching process. In addition, we will consider studying the optimization of

mapping models which seems to be another important issue in MDE.

References

1. OMG, 2001. Model Driven Architecture (MDA)- document number ormsc/2001-

07-01. (2001).

2. Dominguez, K., Pérez, P., Mendoza, L., Grimán, A., 2006. Quality in Development

Process for Software Factories According to ISO 15504, In CLEI electronic journal,

[http://www.clei.cl], Vol. 9 Num. 1 Pap. 3: June 2006.

3. Budinsky, F., Steinberg, D., Merks, E. , Ellersick, R., Grose, T. J., 2003. Eclipse

Modeling Framework: A Developer’s Guide, Addison-Wesley Pub Co, 1st édition.

4. Bézivin, J., Hammoudi, S., Lopes, D., & Jouault, F. (2004). Applying MDA
Approach for Web Service Platform.8th IEEE International Conference on EDOC.
pages58-70.

5. Blanc, X. (Ed. 1). (2005). MDA en action, Ingénierie logicielle guidée par les
modèles. Paris, France: EYROLLES.

6. Jouault, F., 2006. Contribution à l'étude des langages de transformation de modèles,

Ph.D. thesis (written in French), University of Nantes.

7. OMG, 2005. MOF QVT Final Adopted Specification, OMG/2002-11-01.

8. Lopes, D. (2005a).Study and Applications of the MDA Approach in Web Service
Platforms, Ph.D. thesis (written in French), University of Nantes, France.

9. Hammoudi, S., Janvier, J., Jouault, F., Lopes, D., 2005. Mapping Versus

Transformation in MDA: Generating Transformation Definition from Mapping

Specification, In VORTE 2005, 9th IEEE International Enterprise Distributed

Object Computing Conference.

10. Almeida, A.J.P., 2006. Model-driven design of distributed applications. PhD thesis,

University of Twente. ISBN 90-75176-422.

11. Hammoudi, S., Lopes, D., 2005. From Mapping Specification to Model

Transformation in MDA: Conceptualization and Prototyping. In MDEIS’2002,

First International WorkshopOn Model Driven Development, Miami, USA.pages15-23.

12. Slimane Hammoudi, Wajih Alouini, Denivaldo Lopes, Marianne Huchard: Towards A

Semi-Automatic Transformation Process in MDA : Architecture, Methodology and

First Experiments.

13. Lamine Lafi, Waji Alouini, Slimane Hammoudi, Mohamed Gammoudi: Metamodels

Matching: Issue, techniques and comparison 2nd Intenational Workshop FTMMD,

Joint to International Conference ICEIS. June 2010, Portugal.

14. Feiyu, L. State of the Art: Automatic Ontology Matching, Research Report, School

Of Engineering, Jonkoping, Sweden, 2007.

15. Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:

Web,Web-Services, and Database Systems, Volume 2593 of LNCS, Springer

(2002) 221-237

16. Sendall, S., Kozaczynski, W. 2003. Model Transformation – the Heart and Soul of

Model Driven Software Development. IEEE Software, Special Issue on Model

Driven Software Development, pp42-45, Sept /Oct 2003.

17. Kleppe, A., Warmer, J., Bast, W., 2003. MDA Explained: The Model Driven

Architecture: Practice and Promise. Addison-Wesley, 1st edition.

18. Del Fabro, M. D., 2007. Semi-automatic Model Integration using matching

transformation and weaving models. In SAC’07, ACM.

19. Lopes, D., Hammoudi, S., De Souza, J., Bontempo, A., 2006. Metamodel matching:

Experiments and comparison. In ICSEA'06, Proceedings of the International

Conference on Software Engineering Advances.

20. Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidel, M., Strommer, M.,

Wimmer, M., 2007. Matching Metamodels with Semantic Systems – An

Experience Report. In BTW 2007, Datenbanksysteme in Business, Technologie and

Web.

21. Falleri, J.R. , Huchard, M. Lafourcade, M. Nebut, C. Metamodel matching for

automatic model transformation generation. In: Proceedings of MoDELS ’08,

(2008) 326–340.

22. Kurtev, J. Bézivin, and M. Aksit. Technological spaces: An initial appraisal. In Int.
Federated Conf. (DOA,ODBASE, CoopIS), Industrial track, Los Angeles, (2002)

23. Melnik, S. , Garcia-Molina, H. Rahm, E. Similarity Flooding: A Versatile Graph

Matching Algorithm and Its Application to Schema Matching. In Proceedings of the

18th international Conference on Data Engineering (February 26-2002). ICDE.

IEEE Computer Society, Washington, Pages 117-128.

24. Jose de Sousa Jr, Denivaldo lopes, Daniela Barreiro Claro, and Zair Abdelouahab.

A Step Forward in Semi-automatic Metamodel Matching: Algorithms and Tool.

25. Pottinger, R., Bernstein, P.A.: Merging models based on given correspondences.In:

VLDB. (2003) 826-873.

26. Chukmol, U., Rifaiem, R., Benharkat, N.: EXSMAL: EDI/XML Semi-Automatic

Schema Matching ALgorithm, Proceedings of the Seventh IEEE International

Conference on ECommerce Technology, IEEE Computer Society, 422-425, (2005).

27. Jean Remy Falleri : Contributions à l’IDM : reconstruction et alignement de

modèles de classes. Ph.D. thesis (written in French), University of Montpillier 2.

28. Eclipse Project. (2006). http://www.eclipse.org.

http://www.eclipse.org/

