
Frameworks, Architectures and Components:
Revisiting the Development of Multi-Agent

Systems

Victor Noël and Jean-Paul Arcangeli

Institut de Recherche en Informatique de Toulouse
Université de Toulouse

118, route de Narbonne, 31 062 Toulouse Cedex, France
{victor.noel,jean-paul.arcangeli}@irit.fr

Abstract. Motivated by the development of Multi-Agent Systems, we
investigate in this paper the production of agent frameworks by using
component-based software architectures. We introduce the development
method SpEArAF (Species to Engineer Architectures for Agent Frame-
works) used to answer this problem. The main contribution of this article
is essentially in the description of the component model SpeAD (Species-
based Architectural Design) that introduces infrastructures, transverse
components and agent factories. Agents, implemented with components,
are connected to the infrastructure, itself build with components, by the
agent factory using transverse components.

Keywords: multi-agent systems engineering, components, component
model, architectures, framework

1 Design of Multi-Agent Systems: New Development
Paradigms

Modelling a problem and/or its solution with a Multi-Agent System (MAS) is
a way to produce software. Such systems are composed of entities, the agents,
that interact together inside an environment. The specificity of this kind of
modelling lies on the fact that the design effort is focused on the definition
of the agents’ individual behaviours, in order for the system to exhibit a
global behaviour answering the initial requirements. These behaviours are
based on more or less complex interactions between the agents, mostly local, i.e.
not exploiting global information of the system. This make MASs an approach
particularly adapted to distributed, decentralised or acentric systems. MASs-
based modelling is mainly used in the artificial intelligence field (problem solving,
adaptive systems, etc.), in simulation (in particular social), in robotics (robot
collectives) or in ambient intelligence (self-composition of services).1

1 Being not the studied matter here, we will not justify the use of MASs in these
contexts.



2 V. Noël, J.-P. Arcangeli

In this context, a lot of works studied the support of the design of these
systems, and several development methods resulted from it (see [4]). These
methods help to identify the agents of the realised MAS, the interaction means,
direct or indirect, that are useful to them (message exchange, shared environ-
ment, social organisation, etc.) as well as the elements present in their environ-
ment. Then, based on existing theoretical approaches, these methods give
guidelines to define the behaviours of the agents by exploiting these interaction
means: all the difficulty in this step is to find the adequate individual behaviours
that will enable the global system to have the wanted global behaviour.

From the results of this design phase, the MAS developer “just have to”
implement the system, its agents, its interactions, all the necessary tooling
(graphical interfaces, scheduler. . . ) and, if needed, integrate it to existing soft-
ware systems. Fortunately, most of the methods provide tools to ease this work
using the artifacts produced during the design process. However, they are mostly
limited to supporting the development of the process followed in the method,
and do not take into account the specificity of the domain to which this process
is applied.

Indeed, every method, every theory and actually every MAS has its own
types of agent with their own interaction means, their own way of using them
and all of this in a manner adapted to a specific domain. It is because of this
particularity that agent programming differentiates itself from other, more
classical, programming paradigm (e.g. object): every type of agent can be seen
as an abstract machine with it inputs, its outputs, its semantics and its dy-
namic. Then, programming the behaviour of an agent is to program the abstract
machine. Every type of agent brings its own programming paradigm with
its own set of programming primitives. To program with objects, it is translat-
ing the manipulated concepts, and in particular interactions between entities,
in terms of methods definitions and calls. Differently, MASs show a diversity of
interaction means, for example message passing, group communication, indirect
interaction by stigmergy2, explicit organisation with its own dynamic, etc. Thus,
to implement a MAS requires additional efforts to implement this new design and
programming paradigm, then, at the same time, to use it to develop the built
MAS. Some agent platforms try to answer this problem by providing more or
less generic types of agent, but often by targeting a specific method, theory or
application domain, and with a reduced number of interaction means. But this
reduces the realm of possibility available to the MAS developer and can even
push him to use unadapted abstractions to model its problem and solution.

In contrast, inspired from approaches using software architectures and soft-
ware components, we dedicated ourselves to the study of means to produce agent
platforms “a la carte” that would be adapted to a given domain3 and to its devel-
opers. To achieve that, we propose to build component-based architectures

2 Depositing and smelling “pheromones” in a situated environment. Often used in
artificial intelligence.

3 We will use indistinctly the terms “domain” and “application” when talking about
dedicated, adapted or specialised development artifacts.



Frameworks, Architectures and Components: Revisiting MAS Development 3

to realise dedicated agent frameworks. The latter would provide the wanted
agent platforms accompanied by a way to program the agents executed on them.
Defining such architectures is comparable to build the abstract machines able
of executing the behaviour programmed in the paradigm corresponding to the
realised type of agent. Our contribution to the problems is twofold: in terms
of method (models and process) to help to tackle the design of dedicated agent
frameworks, and in terms of component model to apply this approach and
build the frameworks.

This work is part of more general study on the mutual contributions between
software components and software agents, both concepts being commonly seen
as two extensions of the objects.

In the following, we propose to present the component model that we de-
fined by showing its specificity inferred from the context of MASs. To motivate
this work, we will present in section 2 the method we proposed before, and the
problems that brought us to create a new component model. Then we will de-
scribe the model in section 3. Finally we will briefly come back on our original
objectives in section 4 before doing a quick state of the art and conclude.

2 SpEArAF to Design Agent Frameworks

A Multi-Agent System is constituted of entities that can be passive (objects,
databases, blackboards and other resources used by the agents) or active (agents
but also active objects and other entities that are active without taking part in
the system as an agent). Agents interact inside an environment (plan, net-
work nodes, networks, organisational structure. . . ) using action and percep-
tion mechanisms (message passing, read and write on blackboard, access to a
camera, to wheels, network mobility. . . ). The environment can possibly be an in-
teraction medium (organisation, blackboard, event manager. . . ). An agent have
a dynamic (cognitive, reactive. . . ) parametrised by a behaviour (knowledge,
objectives, parameters. . . ) that characterises him as an individual. The dynamic
and the behaviour use and rely on operational mechanisms (interaction pro-
tocols, computational skills, reasoning. . . ), which possibly exploit the action and
perception mechanisms.

As explained before, we proposed a method, named SpEArAF (Species to
Engineer Architectures for Agent Frameworks) [8] that provides models and a
process. It should be noted that SpEArAF does not compete with other existing
MASs design methods that focus on the functionality of the systems. Indeed,
SpEArAF has the objective of helping to realise frameworks dedicated to an
application by relying on component-based architecture engineering.

Such frameworks provides what we call “agent species” and “ecosystems”.
A species is a set of agents with common structural characteristics. An ecosystem
is the environment (runtime but also applicative) where the agents of one or
several species can exist. We can note that the notion of species and ecosystem
differ from the notions of agent and environment used in MASs: indeed, the
former covers the functional and domain aspect of the MAS to produce (type of



4 V. Noël, J.-P. Arcangeli

agents, interactions, organisation. . . ) as much as the operational aspect needed
for the practical realisation of the MAS (rules engine, distribution, scheduling,
visualisation. . . ). These notions enrich those defined by the MAS development
methods and give us a guide to build the frameworks. For example, we can
define and implement a species of robots that interact by radio messages and
move in a 2 dimensions virtual world, scheduled turn by turn and visualisable
using a graphical interface. Or a species of mobile actors (in the spirit of Hewitt
and Agha) whose members interact by messages on the distributed nodes of a
network. The global idea here is to provide specific types of agents that fits the
functional requirements of the system: the application developers can thus rely
on the species to design and to implement the MAS by expressing what the
agents “do” without worrying of operational concerns, i.e. “how” the agents
do what they do. They can thus focus on the functional behaviour of the agents
of their applications.

To define an agent species means: a) to identify the mechanisms the agents
of the species need to interact with other agents and the ecosystem in which
they exist; b) to define the dynamic of the agents of this species (i.e. when
and how the perceptions are handled and the decisions taken) and the internal
mechanisms needed to realise it; c) to define the dynamic of the ecosystem, in
particular what allows the agents to interact but also to be created, as well as
the internal mechanisms needed to realise it; and d) to define the language (i.e.
the abstraction, the primitives. . . ) that will allow to program the behaviour of
the agents of the species. All of this is equivalent to define, “a la carte”, a design
and programming paradigm dedicated to the application (to the system) that
have to be produced.

SpEArAF has a process in two steps corresponding respectively to the build-
ing of a framework by the framework developer then to the exploitation of
this framework by the framework user (the MAS programmer). During the
programming of the MAS, the hotspots of the framework are instantiated by the
framework user to implement the behaviours of the agents. The idea is to build
architectures for agents for which some of the components stay abstract (i.e.
don’t have implementation). Like this, the hotspots of the framework based on
these architecture will be the components that will be implemented by the frame-
work user. Conversely, the framework developers will provide the implementation
for the other components that will be the frozenspots of the framework.

From the concept of species, the building of these architectures can be more
or less automatised. After presenting our proposal in terms of architecture in the
next section, we will give more details on this point in section 4.

3 SpeAD to Describe and Implement Agent Architectures

We presented in the previous section a method supporting the building of frame-
works for MASs. In this section, we propose SpeAD (Species-based Architectural
Design), a component model enabling the realisation of architectures for these



Frameworks, Architectures and Components: Revisiting MAS Development 5

frameworks. We will focus here on the component model and the architectures
that we can describe using it, and not on the produced frameworks.

The concepts defined in SpeAD are separated in 2 levels: infrastructures and
components. Our objective is to enable the easy description, implementation,
use and reuse of components. In particular, we were careful to have a flexible
articulation between the description and the implementation of the component
avoiding any repeat and manual verification of coherence between them. For that
we exploit code generation and strong static typing of the target language (here
Java or Scala).

We first present the components level, its model as well as the way we can
implement the described artifacts. Then we will introduce the infrastructure level
on top of the component by motivating its necessity.

The interest of using components is not to be demonstrated in the soft-
ware engineering field, what motivates us here is before everything the reuse
of recurring mechanisms in the MASs and the agents to ease the development
of MASs and allow for a more broader use of such approaches. Moreover, us-
ing fine-grained components and their composition easiness enable us to answer
our objective of building domain-specific frameworks. Finally, we exploited the
notion of required services to define the abstractions available for the implemen-
tation of the hotspots of the produced frameworks.

To motivate and illustrate our proposal, we use a common example of MAS:
a population of artificial ants. The ant agents moves in a 2 dimensions world and
interact by stigmergy: they deposit pheromones at their position and can smell it
around them. Pheromones evaporate with time. This metaphor is often used to
solve a problem that can be summarised as finding the shortest path in a space:
indeed, with the adequate behaviour, the ants are able to find an optimal path
from one point to another by exploiting the stigmergy. For us, this example
have particularities in terms of MAS: for example, the agents live in an envi-
ronment and interact with it (moving, depositing and smelling of pheromones),
the pheromones have their own evaporation dynamic and the ants have a be-
haviour defined in terms of perception and action. But it also have operational
particularities: for example, the system has to be scheduled in a fair manner
for every agent, but also for the pheromones to evaporate coherently. Moreover
we would like to visualise the evolution of the system and possibly controls the
speed of execution and other such parameters. Finally, in terms of design and
programming abstraction, we would like to describe the agents’ behaviours in a
perception-decision-action cycle by using the high-level mechanisms available to
the ant.

3.1 Components

The idea here is to build software architectures that represent the internal part of
our agents. For the ant for example, this would be its dynamic and its behaviour:
we can have a very simple architecture made of a behavioural component and a
lifecycle component. The former contains the behaviour of the ant (in SpEArAF,
would be a hotspot of our framework providing the abstraction to program



6 V. Noël, J.-P. Arcangeli

the agents). It will implement a perception phase (will receive as inputs the
perceptions at the current time, i.e. the pheromones around), a decision phase
and an action phase (will use the interaction mechanisms). The three of these
will be available as “services” to the rest of the architecture. The lifecycle will
use these services and is responsible of executing the behaviour in the precise
order perception-decision-action by giving it the right information at the right
time (in SpEArAF, would be a frozenspot of our framework implementing the
dynamic of the agents). This architecture will provide a “service” available from
the outside to be scheduled as well as require services that will be provided by
the infrastructure (presented in the next section).

We will recognise (Fig. 1a) common concepts used in this kind of model: the
components have a definition with provided and required ports typed by an
interface (Java-like). The model is hierarchical and the components are com-
posite or primitive (i.e. with or without sub-components, the Val Component).
In the composites are defined bindings and delegations to connect the ports of
the sub-components together and towards the outside (figures 1b and 1c). Our
proposal does not include the definition of new connectors nor parametric typing
of components and interfaces but we think that all of this can be introduced in
the model without modifying the specificity and advantages of our proposition.

component

Val
Component

0..*

Port Prov

0..*

Port Req

0..*

Def
Component

type

Def
Component

Port Req Port Prov

Val
Component

0..*

0..* 0..*0..*

0..*

0..*

type

Visual Paradigm for UML Community Edition [not for commercial use] 

(a) Components.

component

Binding

0..*

Val
Component provider

requirer

0..*

Def
Component

Port Prov

0..*

Port Req

0..*

Def
Component

type

Def
Component

Port Req

Port Prov

Def
Component

Val
Component

Binding

0..*

0..*

provider

0..*

requirer

0..*0..*

0..*

0..*

0..*

type

Visual Paradigm for UML Community Edition [not for commercial use] 

(b) Component: bindings.

component

Val
Component

0..*

Port Prov
0..*

Port Req
0..*

Def
Component

type

Port Prov

0..*

Port Req

0..*

Def
Component

Delegate Prov

0..*

Delegate Req

0..*

Delegate Req Delegate Prov

Def
Component

Port Req Port Prov

Def
Component

Port Req Port Prov

Val
Component

0..*0..*0..* 0..*

0..*

0..* 0..*0..*

0..* 0..*

0..*

0..* 0..*

0..*

type

Visual Paradigm for UML Community Edition [not for commercial use] 

(c) Component: delegations.

Fig. 1: Definitions of the component model in UML2.

The definition of a component corresponds to a type that can have one or
several implementations. If the component is composite, its definition also
corresponds to an implementation of its type in the form of an architecture
connecting its sub-components.

These component definitions are transformed into Java classes that verify
the same coherence of the definition by exploiting the strong static typing of the
language. Thus, implementing a primitive component is to extend an abstract
class and implement the provided ports (i.e. the methods of each one of the
interfaces). The access to the required ports is done through members of the
abstract class that implement the connection of the component to its future ar-



Frameworks, Architectures and Components: Revisiting MAS Development 7

chitecture. The composite component implementations correspond to the several
choices of implementations for its sub-components (a choice that can be delayed
til the composite instantiation).

3.2 Runtime Infrastructure

The definition and implementation of the runtime infrastructure of the agents is
the heart of our proposal. The infrastructure enables the agents to be created,
to be executed and to be able to interact together and with the environment.
The specificity of our proposition is a priori linked to the realisation of MASs,
and we couldn’t find any equivalent proposition in the literature. Some of the
concepts presented here will remind us about the notion of connector: we will
attempt to point up the differences between our proposition and connectors.

Motivation. An infrastructure for ant agents must contains an internal archi-
tecture4 that will maintain the internal state of the environment (managing
pheromones and the evaporation, movements of the agents. . . ), but also control
the scheduling and allow to visualise the system. We want to describe this in-
frastructure using components for its internal part, but also for the part between
the agents and the infrastructure. Indeed, in our example, when we add a new
ant to the system we need to connect the internal architecture of the ant (that
realises its dynamic and behaviour) to the infrastructure architecture.

At a specific time, from the point of view of the complete executed system
containing some agents, there exists a connection between every agent and the in-
frastructure, and this for each of the interaction mechanisms. This connection is
not realised at the system deployment but at runtime since we want agents to be
created and destroyed during the system life. Here for example, every ant agent
architecture must be connected to be scheduled, to move and to deposit/smell
pheromones. Moreover these mechanisms must sometimes be deployed both on
the infrastructure side and the agent side: for example for stigmergy, evapora-
tion is done in the infrastructure, deposit and perception are executed in the
infrastructure from the point of the view of a particular agent that is in a partic-
ular position, and the pheromones stock is proper to each agent. We will note in
particular that the agent and the infrastructure are two elements of the system
of different nature: the problems here are not to connect two agents together like
we would connect two components with a connector, but to connect an agent to
the infrastructure that will enable him to be executed (to “live”), and possibly
to interact with other agents.

We want to be able to describe and implement the mechanisms that are
between the agent and the infrastructure, and at the same time describe and
implement the way to connect these mechanisms to the agent. Moreover we have
to handle this agent-infrastructure link, but also the links between the several

4 We will use indistinctly the terms “architecture” and “composite component” in the
rest.



8 V. Noël, J.-P. Arcangeli

interaction mechanisms of one agent: for example, the position of an agent is
needed to implement the deposit of pheromones of this particular agent.

Thus, we propose to provide a model to define such infrastructures, but also
to implement them so that the created mechanisms and components are reusable
and so that it is easy for the developer to build new infrastructures. We iden-
tified two orthogonal challenges to allow the realisation of such infrastructures:
the definition and implementation of the agent-infrastructure interaction means,
and their composition with the internal architecture of the agents when he is
instantiated.

To answer the first problem, we propose the transverse components. To an-
swer the second problem, we propose the infrastructures and their agent facto-
ries.

transverse

Port Infra
Prov

0..*

Port Infra Req

0..*

Port Agent
Req

0..*

Port Agent
Prov

0..*

Def
Transverse

Def
Transverse

Port Agent
Prov

Port Agent
Req

0..* 0..*

Port Infra Req Port Infra
Prov

0..*0..*

0..* 0..*

0..* 0..*

Visual Paradigm for UML Community Edition [not for commercial use] 

(a) Transverses.

infrastructure

Def
Component

Def
Transverse

type

Def
Component

create
0..*

Val
Transverse use

0..*

0..*

Def Factory

0..*

Def Infra

0..*

Def Infra Def Factory

Val
Transverse

Def
Component

Def
Transverse

Def
Component

0..*

0..*
0..*

0..*

0..*

0..*

0..*
use

0..*

0..*

create
0..*

type

Visual Paradigm for UML Community Edition [not for commercial use] 

(b) Infrastructure.

infrastructure

Port Infra Req

0..*

Port Infra
Prov

0..*

Def
Transverse

type

Port Prov

0..*

Port Req

0..*
Def

Component

Binding Prov

0..*

Binding Req

0..*

Val
Transverse

Def Infra

0..*

Def Infra

Val
Transverse Binding Req

Binding Prov

Def
Component

Port Req

Port Prov

Def
Transverse

Port Infra
Prov

Port Infra Req

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

type

0..*

0..*

0..*

0..*

0..*

0..*

Visual Paradigm for UML Community Edition [not for commercial use] 

(c) Infrastructure: bindings.

Fig. 2: Definitions of the infrastructure and transverse model in UML2.

Proposed Solution. The transverse component (Fig. 2a) allows to define a type of
link between an agent and an infrastructure in a reusable manner. Its objective is
to define the mechanisms enabling the interaction between the agents and their
environment, including other agents. For this, the model first allows to describe
what a transverse provides and requires from the infrastructure, but also what
it provides and requires from each of the agents that will be connected to the
infrastructure using it.

Then, after the definitions are transformed into Java classes, implementing
a transverse is to define:
– The part of the link on the infrastructure side, for which there will be one

instance for each transverse instance in each infrastructure. It implements the
infrastructure side provided ports and use the infrastructure-side required
ports.



Frameworks, Architectures and Components: Revisiting MAS Development 9

– The part of the link on the agent side, for which there will be one instance per
agent for each transverse in each infrastructure. It implements the agent-side
provided ports and use the agent-side required ports.

– The factory that will be used to instantiate the link on the agent side every
time an agent is created.

The connection between the two parts of the transverse component are encap-
sulated inside the implementation of the component.

Infrastructures (Fig. 2b) are aggregates of transverses components possibly
connected to a composite component representing the internal architecture of
the infrastructure. To describe an infrastructure means to express to define the
sub-component for the internal architectures and the set of transverse compo-
nents. Then, it is to describe the bindings between the infrastructure part of the
transverses and the internal composite (Fig. 2c).

In an infrastructure (i.e. given a set of transverse components), we can define
as much factories as we have ways of connecting an internal agent architecture
to the infrastructure. Describing a factory is to express first what are the trans-
verse that will be used by the agent (Fig. 2b). Then it is to express the bindings
between provided and required ports of the composite realising the internal ar-
chitecture of the agent, and the required and provided ports of the agent side of
the transverse that the agent use (Fig. 3a). But it is also to describe the binding
between the provided and required ports of the agent side of the transverses
between them (Fig. 3b). To enable to create agents (possibly by other agents),
the factories are available through ports provided by the infrastructure.

infrastructure

Port Agent
Req

0..*

Port Agent
Prov

0..*

Def
Transverse

type

Port Prov

0..*

Port Req

0..*Def
Component

create

0..*

provider

requirer

Binding
Factory Req

0..*

Binding
Factory Prov

0..*

Val
Transverse

use

0..*

0..*

provider

requirer

Def Factory

0..*

Def Infra

0..*

Def Infra

Def Factory

Val
Transverse

Binding
Factory Prov

Binding
Factory Req

Def
Component

Port Req

Port Prov

Def
Transverse

Port Agent
Prov

Port Agent
Req

0..*

0..*

0..*

create

0..*

use

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

provider

requirer

provider

requirer

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

type

0..*

Visual Paradigm for UML Community Edition [not for commercial use] 

(a) Factory: bindings between
agents and transverses.

infrastructure

Def Factory

0..*

Port Agent
Req0..*

Port Agent
Prov0..*

Binding
Transverse

0..*

Def
Transverse

type

Val
Transverse

requirer

provider

use

0..*

0..*

Def Infra

0..*

Def Infra

Val
Transverse

Def
Transverse

Binding
Transverse

Port Agent
Prov

Port Agent
Req

Def Factory

0..*

0..*

0..*

0..*

type

0..*

0..*

0..*

requirer

provider

0..*

0..*0..*

0..*

use

0..*

0..*

0..*

Visual Paradigm for UML Community Edition [not for commercial use] 

(b) Factory: bindings
between transverses.

Fig. 3: Definitions of the factory in the infrastructure model in UML2.



10 V. Noël, J.-P. Arcangeli

component Lifecycle {
required perceive: Perceive
required decide: Decide
required act: Act
}
component Behaviour {
provided perceive: Perceive
provided decide: Decide
provided act: Act
required move: Move
required deposit: Deposit
required sniff: Sniff
}
component CAnt {
required move = c.move
required deposit = c.deposit
required sniff = c.sniff
val c: Behaviour
val s: Lifecycle {
bind perceive to c.perceive
bind decide to c.decide
bind act to c.act

}
}
component 2DMatrix {
provided getset: GetSet
}
transverse Situated {
agent provided position: Position
agent provided move: SetPosition
infra required getset: GetSet
}
transverse Movement {
agent provided move: Move
agent required position: Position
agent required setPos: SetPosition
infra required getset: GetSet
}
transverse Pheromones {
agent provided deposit: Deposit
agent provided sniff: Sniff
agent required position: Position
infra required getset: GetSet
}
infrastructure IAnt {
val map: 2DMatrix
val d: Movement {
bind getset to map.getset

}
val s: Situated {
bind getset to map.getset

}
val p: Pheromone {
bind getset to map.getset

}
factory FAnt creates CAnt {
bind move to d.move
bind deposit to p.deposit
bind sniff to p.sniff
use d {
bind position to s.position
bind setPos to s.move

}
use s
use p {
bind position to s.position

}
}
}

Fig. 4: Example of the
use of SpeADL.

These definitions are also transformed into Java
classes. Thus, implementing an infrastructure is to
choose the implementations of its composite and its
transverses. To implement a factory is to define how
is instantiated the architecture of the agent as well as
the agent side of the transverses. In a way, a factory
is the composition of the factories of the transverses
with the architecture of an agent.

3.3 SpeADL to Describe Architectures

To allow the description of these architectures practi-
cally, we defined an architecture description language
named SpeADL (Species-based Architectural Design
Language). An example of its use for the ants MAS is
given Fig. 4. This description is not exactly identical
to the example developed in this article: in particu-
lar we added a transverse component to represent the
notion of situated agent.

4 Exploitation

Back to SpEArAF. To answer our initial problems,
here is sketch of the way to connect the concepts used
in SpEArAF to the concepts of SpeAD:
– the identification of the abstractions needed by

the framework user as well as the definition of the
dynamic of the agents of the species will guide
the design of the species architecture, of the fac-
tories and of the choice of the abstract and imple-
mented components (hotspots and frozenspots of
the framework);

– the identification of what compose the ecosystem,
be it MAS (functional), runtime or deployment
(operational), or user environment, will guide the
design of the architecture of the infrastructure;
and

– the identification of what enable the architecture
of the species to interact with the infrastructure
architecture will guide the design of the transverse
components.

Implementation. A first version of the SpeADL language was implemented in the
shape of a textual editor and a code generator, but without the infrastructure



Frameworks, Architectures and Components: Revisiting MAS Development 11

aspect, which limit its interest.5 Prototypes were made to verify the feasibility
of the complete approach, and a usable version is currently being realised.

Application. This approach is applied in several research projects, in particular
in the field of distributed robotics to design the architectures of robots meant
to be used in a simulator and in real robots, see [5] for more information. Other
projects include social simulation and ambient intelligence.

5 State of the Art

We very briefly study here some works that can be compared to our and show
in what they differ.

Multi-Agent Systems. Several works exist in the MAS field exploiting compo-
nents to build agents. We can take as specimens Generic Agent Model (GAM)
[1], MALEVA [2] and Magique [7]. These works use components to build agent
architectures. GAM is a generic agent model made of components and specific
interaction mechanisms. MALEVA is focused on applicative aspect of the agent
and allows to design the behaviour of the agent using components. Magique has
the same objective but adding runtime dynamism to it. But all of these works
are focused on the behavioural aspect of the agent, they proposes a fixed specific
type of agent (a species of agents) and do not tackle the infrastructure needed
to support the system.

Composants. As said before, we can see some similarities between transverses
components and connectors. For example, Medium [3] proposes a way to im-
plement connectors in a distributed environment and easing the reuse. We can
find there the definition of a type of component acting as an interaction mean,
corresponding in our approach by the transverse component supported by the
infrastructure. However, we are focusing on the integration of a component, the
agent, in an infrastructure, which differentiate conceptually Medium from our
work. Even if less mature on the transverse component, our approach, motivated
by MASs, proposes to define a mean to connect everything at runtime with the
factories. This enable us to describe the composition of several transverse com-
ponent with one agent architecture.

[6] proposes a mean to define domain-specific concepts that will guide the
generation and implementation of a dedicated component-based framework. This
work differentiates from ours by the fact that it defines a component model that
is used as a basis for the generation of a generic framework, while we define
directly a framework that we implement using an architecture defined using a
component model.

5 See http://www.irit.fr/MAY.



12 V. Noël, J.-P. Arcangeli

6 Conclusion

In this article, motivated by the development of Multi-Agent Systems (MASs),
we presented a method to support the building of domain-specific agent frame-
works. To realise them, we propose a component model that differs from existing
work by the two available description levels: component and infrastructure. In
particular, a specific type of component is described, the transverse component,
that allows to connect components to an infrastructure using an agent factory.

This work allowed us to corroborate our interest in the presented abstrac-
tions. The next step will focus on the problems linked to the implementation
of the transverse components and the factories. Moreover, this work is done in
the context of a broader research on the link between components and agents.
Among other things, we are interested in the question of knowing if the definition
of a species of agent can be considered as the definition of a component model,
of an architectural style or even of a component container. Another relevant axis
is the use of our approach to support software product lines for MASs as well as
the study of its integration with the existing MAS development methods.

References

1. Brazier, F.M.T., Jonker, C.M., Treur, J.: Compositional Design and Reuse of a
Generic Agent Model. Applied Artificial Intelligence Journal 14, 491–538 (1999)

2. Briot, J.P., Meurisse, T., Peschanski, F.: Architectural Design of Component-Based
Agents: A Behavior-Based Approach. In: Bordini, R.H., Dastani, M., Dix, J.,
Fallah-Seghrouchni, A.E. (eds.) ProMAS 2006. LNCS (LNAI), vol. 4411, pp. 71–
90. Springer (2007)

3. Cariou, E., Beugnard, A., Jézéquel, J.M.: An architecture and a process for imple-
menting distributed collaborations. In: EDOC. pp. 132–143 (2002)

4. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. IGI Global
(2005)

5. Lacouture, J., Noel, V., Arcangeli, J.P., Gleizes, M.P.: Engineering Agent Frame-
works: An Application in Multi-Robot Systems. In: Demazeau, Y., Pechoucek, M.,
Corchado, J.M., Bajo, J. (eds.) International Conference on Practical Applications
of Agents and Multiagent Systems, Salamanca (Spain), 06/04/2011-08/04/2011.
Advances in Intelligent and Soft Computing, Springer (2011)

6. Loiret, F., Plsek, A., Merle, P., Seinturier, L., Malohlava, M.: Constructing domain-
specific component frameworks through architecture refinement. In: EUROMICRO-
SEAA. pp. 375–382 (2009)

7. Mathieu, P., Routier, J.C., Secq, Y.: Dynamic Skills Learning: A Support to Agent
Evolution. In: Adaptive and Emergent Behaviour and Complex Systems Convention,
Symposium on Adaptive Agents and Multi-agent Systems (2001)

8. Noël, V., Arcangeli, J.P., Gleizes, M.P.: Between Design and Implementation of
Multi-Agent Systems: A Component-Based Two-Step Process. In: Moraitis, P.,
Miles, S. (eds.) European Workshop on Multi-Agent Systems (EUMAS), Paris
(France), 16/12/2010-17/12/2010 (2010)


