
Model Driven Cache-Aware Scheduling of

Object Oriented Software for Chip

Multiprocessors

Tolga Ovatman and Feza Buzluca

Istanbul Technical University,
Department of Computer Engineering,

34469 Maslak, Istanbul, Turkey
ovatman,buzluca@itu.edu.tr

Abstract. Leveraging utilization of the shared caches of multicore pro-
cessors is one of the heavily studied topics of today’s chip multiprocessing
community. Providing a scheduling mechanism that maximizes through-
put by reducing miss-rates of shared caches and preserves the fairness
of processor usage is in the center of this problem. Proposed scheduling
algorithms in this field usually take advantage of thread level proper-
ties of software providing modifications at operating system level. In our
study we choose to approach the problem from a different perspective
and use software models to guide operating system to effectively map
software’s objects onto processor cores. In an object oriented software
objects collaborate on fulfilling jobs and they may operate on common
data. Our scheduling method takes class dependencies into account and
tries to schedule objects of coupled classes onto cores that share the
common cache. This paper presents case studies on implementations of
three software design patterns(Strategy, Visitor and Observer) and an
image filtering software implementation. During our experiments we use
our cache-aware scheduler in guiding Linux’s completely fair scheduler
(CFS) to perform more cache-aware schedules and increase performance.
Our results promise that guiding/restricting operating system’s scheduler
using class-relational information present in the object oriented software
model can be fruitful in increasing software performance on multicore
processors.

1 Introduction

For the last decade, mainstream in processor technology is chip multiprocessors,
also named as multicore processors, which involve multiple processing cores in
a processor die. By their nature, multicore processors utilize parallel running
software where cores are assigned to each thread produced by parallel decompo-
sition of software. This assignment operation is done by operating system sched-
ulers, which put emphasis on fairness and load-balancing problems rather than
utilization of shared data among threads. As multicore architectures get more
complicated, cache memories not only serve as buffers for accelerating memory

2 Ovatman, Buzluca

access of threads but also provide a rapid communication medium for shared
data among threads. Recent multicore processor architectures contain relatively
smaller caches for each distinct core and larger shared caches for the cores that
reside on the same chip. It can be expected to encounter more complicated cache
hierarchies as the number of cores increase.

Aside from this situation, current operating system schedulers do not provide
an effective way to deal with cache utilization of processors yet. Instead, their
primary concern is more fair time-slicing of processing elements to provide user
balanced running time of applications [1] [2] [3] [4]. This is quite natural since
operating system scheduler is expected to run on a wide range of processor
architectures and application software. Leveraging different concerns in such a
heterogeneous environment is a serious challenge, that becomes more important
as multicore processors continue evolving towards manycore processors.

Improving operating system schedulers to take cache utilization into account
is being heavily studied by the community. In most of the studies, a single
centralized solution to replace the scheduler is proposed using data gathered
from runtime profile of software [5] [6, 7] [8] [9] [10] [11] [12] [13]. Since proposed
improvements are at operating system level, software analysis are carried on
lower level software structures like loops or thread groups.

Apart from approaches based on modification of operating system’s sched-
uler, another idea is guiding the scheduler using classes as higher level software
components. In our study we try to experiment if extracting such guidelines
from object oriented software design can improve Linux’s completely fair sched-
uler (CFS). We apply our approach on design pattern implementations and gain
performance improvement when the scheduler is guided regarding coupled classes
of software. Coupled classes access methods of each other frequently, raising the
probability of shared data between their objects at runtime. We use design pat-
terns (which can be found frequently in object oriented software) to reason about
possible object tuples that frequently share data at runtime.

At the end of our experiments it can be seen that extracting information
from the software model and placing tightly coupled objects into neighboring
cores (cores that share the same cache) improves operating system’s scheduler
performance. Our approach does not need to change the whole scheduling mech-
anism of the system. Instead, we analyze the dependency relation among classes
in the class diagram of software and provide a set of candidate cores for the
classes that have the potential to communicate frequently at runtime. Placing
those classes’ objects at neighboring cores decrease cache miss rates by taking
advantage of shared data between software classes.

Rest of the paper is organized as follows. Section 2 summarizes the studies
on scheduler improvement studies regarding cache utilization. Section 3 explains
the concept of cache aware scheduling and important factors that effects the
process of exploring shared data for parallelization. In Section 4 minor exam-
ples are given to demonstrate the effects of cache-aware scheduling of threads
followed by more complicated design pattern examples in Section 5. Three dif-
ferent design pattern implementations (strategy,visitor and observer) are used

Model Driven Cache-Aware Scheduling 3

to demonstrate the performance improvement gained by scheduling data shar-
ing objects at neighboring cores. Experiments on a real-world image filtering
software is presented at Section 6. Last section concludes the paper and briefly
presents future studies.

2 Related Work

Previous work on cache-aware scheduling on multicore systems generally takes
advantage of dynamic information of software provided by runtime analysis [5] [6,
7] [8] [9] [10]. This type of scheduling can be supported with the informa-
tion obtained by static analysis of software models and shared data between
them. Wickzier et al. provide annotations for the programmer to explicitly guide
their O2 scheduler called CoreTime in managing shared data among multiple
threads [11]. Xue et al. also proposed a method claiming that static scheduling
can be made locality aware by ensuring that the set of iterations assigned to a
processor exhibit data reuse [12]. Our approach takes one step further and eval-
uates the impact of inter-class relationships of software’s object oriented model
to guide its scheduling.

Another interesting point in Xue’s study is the usage of loops as recurring
software components in scheduling decisions. Loops are heavily used in software
parallelization/cache-utilization studies before. Tam et al. utilize threads as dis-
joint components of parallel/concurrent software and schedule them based on
sharing patterns they pose at runtime [7]. In other words, they basically find
coupled threads at runtime and schedule them to share L2 caches. Federova
et al. identify coupled threads as co-runner threads and try to reduce perfor-
mance variability caused by cache-unfair scheduling of them [13]. We focus on
coupled software components at object oriented level and use the data sharing
classes’ objects (which are already specified at software model/code) to guide
the operating system’s scheduler.

Using static software models is another rarely used subject in cache-aware
scheduling studies. One of those studies that explicitly uses models and software
abstractions in maximizing cache reuse in multicore scheduling is done by Kumar
and Delgrande [14]. They try to solve optimal multicore scheduling problem by
using a graph theoretic formulation and answer set programming in their study.
In our study we specifically use object oriented software models to reason about
data sharing among software’s classes.

In our previous study, we examined if it was possible to capture paralleliza-
tion behavior together with frequently used design patterns [15]. In addition
to the parallelization recipe for the design patterns, in this study we also pro-
vide scheduling guidance based on characteristic data sharing between patterns’
classes. Our study makes three contributions on the topic of scheduling for mul-
ticore systems; 1) investigating the usability of higher level static information,
2) use of object oriented approach and design patterns, 3) applying model based
analysis to discover shared data usage.

4 Ovatman, Buzluca

3 Cache-Aware Scheduling

In the context of this paper, we use the term Cache-Aware Scheduling to indicate
the operation of guiding operating system’s scheduler with the information of
shared data between software classes. Shared data can be detected dynamically
via runtime environment or an external dynamic analysis tool. However partial
or full development of the software at hand is needed to perform this kind of
analysis. In our study we have chosen to use software models and static class
diagrams to reason about parallelism at an early stage of software development.

Using software models to guide scheduling provides two important advan-
tages. Firstly, we can obtain parallelization information before the actual soft-
ware runs or even before it is implemented. This helps us to design more com-
peting software for multicore systems and to produce parallel code that performs
better on different multicore architectures. Secondly, we provide the ability to
guide the operating system’s scheduler without replacing it during the schedul-
ing process. The analysis of software model at hand can be performed semi-
automatically by a programmer or an automated tool to detect data sharing
software components of software. According to this information the operating
system’s scheduler tries to assign objects, which operate on common data to
proper cores so that shared data can be placed into shared caches.

During the analysis of the software three different factors in parallelization
should be considered.

- Parallelization : The number of distinct parts in software that can run inde-
pendently. They should be scheduled to different cores.

- Data sharing : Object tuples that share a significant amount of data regard-
ing shared/non-shared caches. They should be scheduled to neighboring (or
same) cores.

- Resource utilization : The ratio of cores/caches to the number of objects
that run on the system.

Resource utilization is heavily influenced by parallelization and data sharing
since these two factors have an orthogonal effect on system performance. De-
composing software too much for the favor of parallelization causes objects to
write on different caches frequently and increase cache misses. On the other hand
scheduling objects strictly on neighboring cores to utilize cache reuse may cause
parallelized objects to wait for the same core even though there are some other
idle cores present. This situation decreases the parallelization performance when
there exists fewer cores in the die than the objects to be scheduled. During our
experiments we try to explore how these factors effect each other to extract more
meaningful information from the model. We use practical real-world examples
based on design pattern implementations, small enough to successfully observe
the effect of each factor during the scheduling.

In our studies we use Gang of Four (GoF) software design patterns [16]
to analyze data sharing classes of the pattern. Software design patterns are
frequently used in today’s object oriented software designs to solve common
problems. Additionally, a large number of studies exist in the literature about

Model Driven Cache-Aware Scheduling 5

detecting software design patterns [17] [18] [19] [20] [21] [22], making it possible
to automatically inject our cache-aware scheduling directives inside software.

We apply our cache-aware scheduling technique on design patterns to show
that even for smaller parts of the software we can provide better scheduling using
data sharing information between components. This approach can be applied to
larger software where many different instances of many design patterns can be
found and analyzed for data sharing. In this paper we focused on the applicability
of model based scheduler guidance by analyzing data usage of recurring themes in
software designs. Our approach is not limited to specific software design patterns
but rather offers to use parallelization strategies together with patterns that
emerge in software designs.

4 Effects of Cache-Aware Scheduling

4.1 Case Studies on Software Design Patterns

Our experiments are performed in a system with 4 double cored Intel Xeon
processors and an operating system of Linux kernel 2.6 running on it. We use
Java as the main programming language to develop the design pattern case
studies. Since Java lacks an API to explicitly set a thread’s processor affinity, we
used C++ to implement pthread ’s [23] thread affinity setting functions [24] and
JNI to call our C++ thread affinity setter implementations from Java programs.
pthread library allows thread distribution via sched setaffinity and CPUSET

functions which can be used to explicitly define thread-to-processor distribution
schemes for the objects in the patterns. For the majority of the experiments,
objects of the patterns are programmed as separate threads, and assigned to
processors either explicitly under control of the programmer or automatically by
the system scheduler. In our experiments we repeat program runs for a sufficient
number of times to let the running time average converge.

Figure 1 presents the processing element architecture used in our experiments
which consists of four different processors each having two cores with a shared
L3 cache of 4096KB in size. In our scheduling schemes we use the term “neigh-
boring cores” to indicate the cores that reside in the same physical processor
and share the same cache (e.g. 1-7, 2-5, 3-6, 4-8). We call our proposed schedul-
ing approach as CAWS (Cache-Aware Scheduling) where the threads that share
data are placed onto neighboring cores as much as possible. Linux’s CFS sched-
uler actually does not take caches into account and migrate the threads often,
resulting threads to share caches in a non-determined way.

For our case studies, we implement three different design patterns: Strat-
egy, Visitor and Observer. All these patterns commonly consist of some master
(service requester)-worker (service provider) classes. UML diagrams of the men-
tioned patterns can be found below.

For strategy (Figure 2), each strategy object (worker) provides a service of
applying a different algorithm on the client (master/service requester) object.
Data is shared between strategy and client objects for this pattern. At runtime

6 Ovatman, Buzluca

Main Memory(15GB)

Processor 1 Processor 2

Processor 3 Processor 4

L3(4096KB) L3(4096KB)

L3(4096KB) L3(4096KB)

L2(1024KB) L2(1024KB) L2(1024KB) L2(1024KB)

L2(1024KB) L2(1024KB) L2(1024KB) L2(1024KB)

L1(16KB) L1(16KB) L1(16KB) L1(16KB)

L1(16KB) L1(16KB) L1(16KB) L1(16KB)

Core#1 Core#7 Core#2 Core#5

Core#3 Core#6 Core#4 Core#8

Fig. 1. Central Processing Unit Architecture

there may be many clients (service requester) running in parallel using a specific
strategy object in common.

In visitor (Figure 3), each visitor object provides its service when it is called
explicitly by the master (service requester) object. At runtime there may be
many elements requesting services from a set of visitor objects arbitrarily. Some
visitor objects may be used in common during these service requests as well.
Objects that implement the Visitor interface and Element objects that are visited
by Visitors are data sharing components for Visitor pattern.

In observer (Figure 4), a subject object presents the update notification ser-
vice of its states to a set of observer objects. At runtime some observer objects
may register to different common subjects. A Subject object and its observers
commonly use the state of the Subject in this design pattern.

Similar examples can be implemented for other patterns as well, we choose
our examples in this paper illustrate different data sharing (read-only, read/write)
and thread creation schemes. Our implementations are explained in detail in Sec-
tion 5 but before initiating more complicated experiment scenarios it can be
useful to illustrate the effect of cache reuse in scheduling design patterns on basic
experimental configuration.

4.2 Effects of Cache-Aware Scheduling on Basic Examples

To show that sharing common caches makes a notable performance difference
at runtime we need to provide a basic set of isolated examples showing the

Model Driven Cache-Aware Scheduling 7

Client Strategy

StrategyAlgorithm() : void

ConcreteStrategy1

ConcreteAlgorithm1() : void

ConcreteStrategy2

ConcreteAlgorithm2() : void

Fig. 2. Strategy Design Pattern

Element

accept(Visitor : Object) : void

ConcreteElement

accept(Visitor : Object) : void

Client <<interface>>
Visitor

visit(ConcreteElement : Object) : void

ConcreteVisitor

visit(ConcreteElement : Object) : void

<<realize>>

Fig. 3. Visitor Design Pattern

difference of cache-aware scheduling with respect to its counterparts. For this
purpose we configure our implementations consisting of only one master-worker
object couple for each design pattern. In each of the examples below there only
exist two objects at runtime sharing a fixed amount of data that is proportional
to the size of common caches in the processor.

For each example we used the worst-case running time to normalize running
times between 0 and 1 (worst performance). The results we obtained for each of
the examples are as follows.

- Strategy : In Table 1 we can see that for a large quantity of shared data,
placing two objects at neighboring cores(CAWS) outperforms the CFS. When
the amount of data being shared gets smaller cache sharing effect loses its
significance.

Table 1. Normalized running times for basic strategy implementation

Shared Data: 1MB 8KB None

CFS 0.95 0.99970 0.99965

CAWS 0.87 0.99965 1.00000

8 Ovatman, Buzluca

Observer

update(s : Subject)

Subject

attach(o : Observer)
detach(o : Observer)
getState()
notify()

state

ConcreteObserver2

update()

ConcreteObserver1

update()

10..*

for(Observer o:observers)
 o.update();

s.getState();

Fig. 4. Observer Design Pattern

- Visitor : In Table 2 we can see similar results with Table 1. When the
amount of shared data gets closer to shared cache sizes using a cache-aware
scheduling starts to perform better.

Table 2. Normalized running times for basic visitor implementation

Shared Data: 1MB 8KB None

CFS 0.81 0.96 0.9998

CAWS 0.77 0.96 1.0000

- Observer : Finally in Table 3 we can see similar results but this time an
additional scheduling scheme has also been added(referred to as SACS(Same
Core Scheduling)). Since one observer and one subject cannot run parallel
at all we can place them at the same core at runtime. When placed at same
core, with an amount of data small enough to fit the private cache, the
system had a superior performance.

Table 3. Normalized running times for basic observer implementation

Shared Data: 1MB 8KB None

CFS 0.99 1.00 1.00

CAWS 0.87 1.00 1.00

SACS 0.87 0.29 0.99

As it can be seen from the running times above, scheduling the data sharing
objects in a way that allows them to use the same processor cache outperforms

Model Driven Cache-Aware Scheduling 9

the Linux’s CFS. We can also see that for the objects that have sequential
behavior and use shared data, scheduling them at the very same core provides
superior performance since it allows storing shared data at private cache of the
core.

From our basic examples above we see that migrating shared data among pro-
cessors and re-fetching large amounts of data inside the memory hierarchy are
time consuming operations that degrade software performance. By running ex-
periments on multi-object examples we can comment about cache-aware schedul-
ing on more realistic cases.

5 Applying Cache-Aware Scheduling

We shall continue our experiments with more complicated configurations on de-
sign patterns to show the difference between cache-aware scheduling and current
scheduler of Linux. In this section we let many objects inside the design pat-
terns interact during runtime using different parallelization approaches. For all
the patterns below, we instantiate different number of objects for each different
type of class that the pattern contains. We implement each object as a sepa-
rate thread, hence two terms (object and thread) are used interchangeably in
this Section. We briefly describe the parallelization approaches we apply for the
following patterns and discuss the results for different configurations.

5.1 Strategy

For strategy pattern, we construct a constant number of strategy objects, each
representing a different strategy for a specific number of client objects. Each
client object is affiliated with a strategy object at runtime working on a prede-
termined amount of shared data that is smaller than the size of the shared cache.
For the sake of simplicity, the data of the client is always read (never written)
by the strategy for this case.

In Figure 5, we can see Normalized Running Times(NRT) of 32 client objects
under different scheduling policies using different number of strategies. When
the number of parallelized parts (strategies) are less than number of distinct
processing cores in the system, we can see a performance gain which is caused
by reduced missing rate during the data access of threads. If the number of
parallelizable parts exceed the number of cores (8 in our system), scheduler
starts to preempt threads and change cache content thus the effect of cache-
aware scheduling vanishes for number of strategies more than 8. A speedup of
nearly 10% compared to CFS, is present when cache aware scheduling is used.

5.2 Visitor

In this case, desired number of visitors are constructed independently before
element objects run. When an element needs a visitor one is taken from the pool
and assigned to the element object. Since waiting times can vary for each element

10 Ovatman, Buzluca

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10 12 14 16 18

N

R

T

Number of strategies

CAWS

♦

♦

♦

♦

♦

CFS+

+

+

+

+

Fig. 5. Scheduling strategies with different policies

and each visitor, each class holds a queue of the next object to provide/request
service. Visitors hold a queue of elements to start serving the next object in
line after the ongoing work finishes. A similar situation is present for elements
as well, they hold a queue of visitors to ask for a service. For this case a more
complicated structure is used where any visitors may visit any elements during
runtime; unlike strategy no predetermined element-visitor bindings are applied
before system run.

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

N

R

T

Number of Elements

CAWS
♦ ♦

♦

♦

♦

♦

CFS

+
+

+

+

+

+

Fig. 6. Scheduling 8 Visitors with different policies

In Figure 6 we can see that cache-aware scheduling outperformed others until
the number of parallelized objects reach the number of cores. Additionally, even
when we schedule visitors on distinct cores from elements but in the same cores

Model Driven Cache-Aware Scheduling 11

with other visitors, CAWS still outperform CFS. This time we use cache read
and writes so we don’t experience a cache utilization as much as strategy case.

5.3 Observer

Implementation of observer adopts a different object construction approach than
the previous cases. This time, observer objects are constructed inside subject
objects. This enforces each observer thread to be started and joined inside a
different object, providing larger number of object constructions during runtime.
Additionally, subject-observer groups run more isolated in this case thus need
less synchronization effort. Moreover instead of enforcing objects to be scheduled
on static cores, a set of candidate cores are provided to operating system for each
object. Hence a hybrid CAWS-CFS approach is used versus CFS this time.

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8 9

N

R

T

Number of Subjects

CAWS♦
♦

♦

♦

CFS

+

+

+

+

Fig. 7. Scheduling 2 observers with different policies

In Figure 7, we can see running times for 2 observers observing different
number of subjects. Although observer objects are created and destroyed con-
tinuously for each subject, degrading the amount of data reuse during runtime,
scheduling the system using a cache-aware policy still provided performance up-
grade when compared to CFS.

Finally in Figure 8, the number of objects in the system varies as a whole
consisting of different number of subjects and observers. Again using CAWS pol-
icy results in a better performance than the default CFS scheduling. We can see
that for both examples mixing CFS with CAWS still provided better results than
using only CFS. Albeit gaining relatively smaller performance improvements in
some of the cases above, it is important to consider that CAWS operates on
application level while CFS operates directly on the kernel level. Guiding oper-
ating system scheduler based on model driven analysis may also allow us to start
tuning an application for a specific processor architecture before the software is
implemented.

12 Ovatman, Buzluca

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

4 6 8 10 12 14 16 18

N

R

T

Number of Objects

CAWS♦

♦

♦

♦

CFS

+

+

+

+

Fig. 8. Scheduling many subject-observer tuples with different policies

In our experiments with design pattern implementations, the benefit obtained
from cache utilization degrades as the number of objects reach beyond the num-
ber of cores in the system. This situation is caused by increased number of cache
misses as different objects starts to be swithced on the cores of the system. Nev-
ertheless this problem loses its significance as the number of cores reside in a
chip tend to increase over time.

6 Cache-Aware Scheduling on a Real-World Case Study

We implement an image filtering software which contains two design patterns
that we are going to apply cache-aware scheduling. Image filtering software sim-
ply reads in an image(approximately 1.6MBs in size) as a matrix of gray levels
for each pixel and convolves it in a parallel way with the filters defined in the
software. To create different scenarios, we implemented the software in two differ-
ent ways by applying different design patterns. Firstly each filter is implemented
as a thread and applied separately on the same image. This way filters work
similar to the strategies in the strategy design pattern. Secondly three filters
are applied successively as a composite filter on the image. This feature is im-
plemented using a Composite pattern(GoF). Each composite filter thread works
on a different subsection of the image matrix where each subsection is held in
an image buffer. A simplified class diagram(without attributes and methods)
that shows the relation among classes of the related software can be found in
Figure 9.

For our first case we have applied a scenario to apply different number of
filters on the same image in a parallel way. In this scenario the user selects some
filters to apply on the image at once. In our software we read the image data for
all the filters and apply each filter seperately in a parallel way. This way all the
filters use the same image data, enabling the filters to share caches effectively. In

Model Driven Cache-Aware Scheduling 13

Application
BlurFilter

ImageMatrix

CompositeFilter

GaussianFilter

EmbossFilter

Filter ImageBuffer

Fig. 9. Simplified Class Diagram of Image Filtering Software

Figure 10 we can see a similar performance improvement with our experiments
on strategy pattern.

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8

N

R

T

Number of filters

CAWS

♦ ♦
♦

♦

♦ ♦
♦

♦

CFS

+ +

+

+ + +

+

+

Fig. 10. Scheduling image filtering operation using Strategy pattern

For our second scenario we have applied a different approach on image filter-
ing. This time, three filters are chosen to be applied on the image consecutively
as a composite filter. This time the image is divided into a number of subsec-
tions in order for the filters to run on different parts of the image in parallel.
After the image has been divided, chosen filters are applied on each subsection
of the image one after another. Subsections are processed in parallel but filters
run seqential for each subsection. This way the amount of shared data between
filters are decreased and therefore in Figure 11 we can see a smaller performance
speedup compared to our first case.

14 Ovatman, Buzluca

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8

N

R

T

Number of image subsections

CAWS

♦

♦

♦

♦

♦
♦

♦

CFS+

+

+

+ +

+

+

Fig. 11. Scheduling image filtering operation using Composite pattern

For both of our cases cache aware scheduling provides an improvement over
the performance of the CFS scheduler, especially when the application behaviour
involves denser data sharing between objects. An improvement of 10% is ob-
tained for our first case, and for our second case cache aware scheduling didn’t
degrade the CFS performance. We believe that, for a scheduler that operates
on the application level, using information from the very early design stage
of software development, improving operating system’s scheduling performance
supports the applicability of cache-aware scheduling.

7 Conclusion and Future Work

Our studies on cache-aware scheduling show that considering shared data dur-
ing scheduling increases the scheduling performance when multicore processors
are used. It is important to utilize shared data among software components in
guiding the scheduling process, even if it is not always possible to make accurate
predictions on data sharing among software components before the system is
run.

Our approach uses software models to reason about data sharing among
the classes of a software. In our study we have experimented on three different
commonly used software design patterns to consider the effect of cache-aware
scheduling. We obtained promising results to apply our model-based approach
on larger software considering the three important factors (parallelization, data
sharing and resource utilization) that effect the overall performance of the system
in our case studies. Beside its positive effects on scheduling performance, using a
model driven approach may lead us to reason about software design for various
core organizations that processors can include in the future.

In our future studies we plan to improve our approach and implement a model
based parallelization methodology based on the principles obtained from our ex-
periments in this paper. By using such methodology it can be possible to reason

Model Driven Cache-Aware Scheduling 15

about parallelization and data sharing during the early design stage of soft-
ware development. Moreover it can be possible to steer the design/development
process to produce more competing designs for parallelization when different
processor architectures are used.

References

1. T. Zangerl, “Optimisation: Operating system scheduling on multi-core architec-
tures.” http://tzangerl.net/doc/MulticoreScheduling.pdf, 2008.

2. S. Siddha, “Multi-core and linux kernel.” http://software.intel.com/sites/

oss/pdfs/mclinux.pdf, 2007.

3. “MSDN section on windows scheduling.” http://msdn.microsoft.com/en-us/

library/ms685096%28VS.85%29.aspx.

4. Oracle, “Solaris 11 programming interfaces guide.” http://docs.sun.com/app/

docs/doc/821-1602/psched-23069?a=view.

5. S. Kim, D. Ch, and Y. Solihin, “Fair cache sharing and partitioning in a chip
multiprocessor architecture,” in In IEEE PACT, pp. 111–122, 2004.

6. D. Tam, R. Azimi, L. Soares, and M. Stumm, “Managing shared l2 caches on
multicore systems in software,” in Workshop on the Interaction between Operating
Systems and Computer Architecture, 2007.

7. D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware scheduling
on smp-cmp-smt multiprocessors,” in EuroSys ’07: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, (New York,
NY, USA), pp. 47–58, ACM, 2007.

8. A. Merkel and F. Bellosa, “Memory-aware scheduling for energy efficiency on mul-
ticore processors,” in HotPower, 2008.

9. J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley, “A concurrent dynamic
analysis framework for multicore hardware,” in OOPSLA ’09: Proceeding of the
24th ACM SIGPLAN conference on Object oriented programming systems lan-
guages and applications, (New York, NY, USA), pp. 155–174, ACM, 2009.

10. B. Zhou, J. Qiao, and S. kuan Lin, “Research on dynamic cache distribution
scheduling algorithm on multi-core processors,” in E-Business and Information
System Security, 2009. EBISS ’09. International Conference on, pp. 1 –4, 23-24
2009.

11. S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek, “Reinventing scheduling for
multicore systems,” in Proceedings of the 12th Workshop on Hot Topics in Oper-
ating Systems (HotOS-XII), (Monte Verità, Switzerland), May 2009.

12. L. Xue, M. T. Kandemir, G. Chen, F. Li, O. Ozturk, R. Ramanarayanan, and
B. Vaidyanathan, “Locality-aware distributed loop scheduling for chip multipro-
cessors,” in VLSID ’07: Proceedings of the 20th International Conference on VLSI
Design held jointly with 6th International Conference, (Washington, DC, USA),
pp. 251–258, IEEE Computer Society, 2007.

13. R. Fedorova, M. Seltzer, and M. D. Smith, “Cache-fair thread scheduling for mul-
ticore processors,” tech. rep., Harvard University, 2006.

14. V. Kumar and J. Delgrande, “Optimal multicore scheduling: An application of asp
techniques,” in LPNMR ’09: Proceedings of the 10th International Conference on
Logic Programming and Nonmonotonic Reasoning, (Berlin, Heidelberg), pp. 604–
609, Springer-Verlag, 2009.

16 Ovatman, Buzluca

15. T. Ovatman and F. Buzluca, “Software design pattern behavior in shared memory
multiprocessor systems,” in International Conference on Computational Intelli-
gence and Software Engineering, CiSE’09, pp. 1 –4, 2009.

16. B. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

17. F. Bergenti and A. Poggi, “Improving uml designs using automatic design pattern
detection,” in Proc. 12th International Conf. Software Eng. and Knowledge Eng.
(SEKE 00), pp. 336–343, 2000.

18. G. Antoniol, G. Casazza, M. D. Penta, and R. Fiutem, “Object-oriented design
patterns recovery,” Journal of Systems and Software, vol. 59, no. 2, pp. 181 – 196,
2001.

19. D. Heuzeroth, T. Holl, G. Högström, and W. Löwe, “Automatic design pattern
detection,” in Proceedings of the 11th IEEE International Workshop on Program
Comprehension, IWPC ’03, (Washington, DC, USA), pp. 94–, IEEE Computer
Society, 2003.

20. Z. Balanyi and R. Ferenc, “Mining design patterns from C++ source code,” in 19th
International Conference on Software Maintenance (ICSM 2003), The Architecture
of Existing Systems, 22-26 September 2003, Amsterdam, The Netherlands, pp. 305–
314, 2003.

21. N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis, “Design pattern
detection using similarity scoring,” Software Engineering, IEEE Transactions on,
vol. 32, no. 11, pp. 896 –909, 2006.

22. J. Dong, Y. Zhao, and Y. Sun, “A matrix-based approach to recovering design
patterns,” Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, vol. 39, no. 6, pp. 1271–1282, 2009.

23. B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Programming. O’Reilly, 1998.
24. GNU, “Gnu c library’s section on limiting execution to certain cpus.” http://www.

gnu.org/software/libc/manual/html_mono/libc.html#CPU-Affinity.

